
Autonomous Control of a Particle Accelerator using
Deep Reinforcement Learning

Xiaoying Pang
Apple

pangxy@gmail.com

Sunil Thulasidasan
Los Alamos National Laboratory

sunil@lanl.gov
Larry Rybarcyk

Los Alamos National Laboratory
lrybarcyk@lanl.gov

Abstract

We describe an approach to learning optimal control policies for a large, linear
particle accelerator using deep reinforcement learning coupled with a high-fidelity
physics engine. The framework consists of an AI controller that uses deep neural
networks for state and action-space representation and learns optimal policies using
reward signals that are provided by the physics simulator. For this work, we only
focus on controlling a small section of the entire accelerator. Nevertheless, initial
results indicate that we can achieve better-than-human level performance in terms
of particle beam current and distribution. The ultimate goal of this line of work is
to substantially reduce the tuning time for such facilities by orders of magnitude,
and achieve near-autonomous control.

1 Introduction

Large particle accelerators are highly complex and dynamic systems. Due to their high-dimensional
parameter space and dynamic nature, accelerator tuning for optimal performance can be challenging.
These characteristics, however, makes it potentially suited for a reinforcement learning (RL) approach
that learns to make sequences of optimal decisions under uncertainty by trial and error. Recent
developments in reinforcement learning have shown that it can surpass human performance, not only
in complex board games with exponential search spaces [1], but also in real-life settings such as
controlling large-scale data centers with hundreds of tunable knobs [2], finding set points that were
previously unknown and unconsidered by human operators.

Previous research on applying machine learning techniques to accelerator subsystem modeling and
control have shown promising results [3, 4]. In this work, we present an RL approach coupled with
deep neural networks that can teach itself how to operate a section of a particle accelerator just like a
human operator does yet without any input or supervision from a human. Note that we are not only
interested in reaching a good operating condition from a certain starting point, which can be achieved
by many optimization techniques [5, 6], but also if the controller, once trained, can efficiently lead us
to the optimal solution from virtually anywhere in the parameter space.

2 Reinforcement Learning Background

Standard reinforcement learning can be framed as a Markov Decision Process (MDP). Under this
framework, an agent learns to make optimal decisions by interacting with an external environment.
Learning is an iterative process. At the beginning of the tth time step, the agent’s status quo is
captured by a state vector st. It then takes an action at sampled from a policy π(at|st), which is a

Workshop on machine learning for engineering modeling, simulation and design @ NeurIPS 2020

distribution over the actions conditioned on the current state st of the agent. The policy defines the
behaviors of the agent under different circumstances. The ultimate goal of a reinforcement learning
algorithm is to find the optimal policy which will suggest best actions under all possible conditions.
After acting out the action at, the agent will transition into a new state st+1, according to the transition
probability p(st+1|st, at), at the same time, observe a consequence or feedback from the external
environment, which is the reward rt. A reward can be positive, indicating some degree of success
or negative, which indicates a punishment. The assumption that the state transition probability to
st+1 only depends on the current state st and action at, not on the past ones, makes this process
Markov. The optimal policy we are looking for is not the one that only gives the highest reward at
the current time step, but the the one that understands delayed gratitude and brings the largest total
reward eventually. The concept of expected total reward is captured by two quantities: action-value
function Qπ(st, at) and value function V π(st).

Qπ(st, at) = Eπ[

T∑
t′=t

γ(t
′−t)r(st′ , at′)|st, at] (1)

Qπ(st, at) as in (1) is the expected overall reward one can get if it starts the tth time step at state st
and takes action at. γ ∈ (0, 1) is a discount factor that makes a recent reward more valuable than the
future ones and also keeps the value function bounded for problems with infinite horizon. V π(st) is
simply the average of Qπ(st, at) over all possible actions from the policy as shown in (2).

V π(st) = Eat∼π(at|st)[Q
π(st, at)] (2)

There are several approaches to obtain the optimal policy. One of them is value-based approach which
adopts a simple greedy policy of taking whatever action that could result in the largest Q-function
Qπ(s, a) as shown in (3).

π∗(at|st) =
{
1, if at = argmaxaQ

π(st, a).

0, otherwise.
(3)

The critical part of this approach is to estimate the Q-function and taking the argmax operation,
which could be a nontrivial task for continuous action space. Another approach is to optimize the
policy πθ(at|st) directly for the best total reward by adjusting its parameter set θ. This approach is
called policy gradient; when combined with an estimated value function, becomes the actor-critic
approach, with the policy being the actor and the estimated value function being the critic. Both
entities can be represented by a neural network or any kind of linear or nonlinear model. They are
trained simultanously. In a forward/prediction step, the best action is predicted by the actor/policy
and an estimated total future reward is predicted by the critic/value model all based on the current
state st. During the backward/update step, the actor/policy is updated to minimize a loss function
of − log πθ(a|s)Aπθ (s, a) where Aπθ (s, a) is the advantage (4). It represents the benefit of the total
reward by taking a particular action compared to the average one.

Aπθ (st, at) = Qπθ (st, at)− V πθ (st)
Qπθ (st, at) = r(st, at) + γEst+1∼p(st+1|st,at)[V

πθ (st+1)]

≈ r(st, at) + γV πθ (st+1)

(4)

V πθ (st) and V πθ (st+1) are estimations provided by the critic/value model which is updated by
minimizing a mean square loss of (V πθ (st)−Qπθ (st, at))2 where Qπθ (st, at) is obtained according
to (4). More recently, the asynchronous advantage actor-critic (A3C) algorithm [7] was proposed
to enhance the performance of the actor-critc approach by asynchronously launching multiple
agents in parallel on multiple instances of the external environments. Since the agents are lauched
asynchronously, they are under different circumstances at any given moment, the consecutive updates
from any one of them are more likely to be uncorrelated. This approach can achieve more stable and
efficient training. Please refer to the appendix of [7] for details on the algorithm.

2

T1 Amplitude T2 Amplitude T2 Phase T3 Amplitude T3 Phase
min 37.0 61.7 0.0 60.3 0.0
max 47.6 76.1 360.0 74.2 360.0
max step 1.0 1.0 5.0 1.0 5.0

Table 1: Action variable ranges and max adjustment step size.

3 Problem Statement and Method

Particle accelerators are typically high-capital infrastructures where training an optimal control
system using the actual facility is not feasible. It is therefore reasonable to start training on a high-
fidelity simulator that can effectively act as a virtual accelerator environment. For this purpose, we
use a high-fidelity GPU-accelerated online multi-particle beam dynamics simulator (HPSim [8])
that simulates a half-mile-long, 800-MeV proton linear accelerator (linac). The simulator has been
successfully used to diagnose and troubleshoot real-world accelerator operational issues. For this
study, the external environment which the agent is interacting with is simulated by HPSim and
interfaced through OpenAI gym [9]. The goal is to teach the controller to operate a section of the
linac (the drift tube linac, or DTL) by adjusting the cavity field amplitude and phase control variables
of the first three tanks. In this case, we have a five-dimensional continuous action space is formed
by the incremental changes of the cavity field amplitude and phase variables for the first three DTL
tanks, We chose to work in a continuous action space for convenience although a discrete action
space can also be adopted by digitizing the set-point ranges. To avoid the (simulated) tripping of
the hardware protection system of an accelerator and making the tuning process more stable, the
incremental change step sizes of the action variables are bounded by predefined values as listed in
Table 1.

We measure the simulated beam current at locations that coincide with the real world counterparts, as
well as the power of the lost particles as a proxy for the reading from a real-world beam loss monitor.
The beam current and power of lost beam readings at five locations along and after the DTL together
with the readings of the absolute values of the five control variables form the 15-dimensional state
vector of our RL problem. A good operating condition is defined as the one when 85% of the beam
can reach the last beam current monitor right before entering the next stage of the accelerator. A
learning episode is considered done once this condition is reached or the number of training steps
exceeds a predefined threshold. The reward function is defined in (5)

r =

{
+1000, if I[5]/I0 >= 0.85.

−
∑5
n=1[An · (0.85− I[n]/I0)2 +B · P [n]2], otherwise.

(5)

where I0 is the beam current at the entrance of the DTL and I[n] and P [n] are the beam current
and power of lost beam reading at the nth monitor. One can also make the reward function action-
dependent by subtracting a norm of the action vector to punish extreme changes. In our case, extreme
actions are limited by imposing limits on the sizes of incremental changes of the action variables.
There are a few hyperparameters in (5). We choose to increase An as n increases to emphasize the
importance of downstream monitors (A[1] to A[5] range from 0.1 to 0.3 with a step size of 0.05). B
is set to be 0.2.

The learning algorithm we adopt is A3C [7]. It is efficient and lends itself naturally to problems
with continuous action space. Our simulations are carried out on a cluster node equipped with four
Geforce GTX 1080 GPUs. We can launch up to four agents simultaneously with each running in
a separate thread and interacting with its own copy of the HPSim accelerator simulator running on
one of the GPUs. Each agent also owns a local copy of the RL model which guides its learning
locally. The agents collectively maintain a global RL model by applying their local gradients to it and
synchronize their local copies with it periodically. Both the actor and the critic in the RL model are
represented as MLP(multilayer perceptron) networks. Figure 1 illustrates the various modules of our
learning system. We used tanh activation function and applied a dropout rate of 10%. The algorithm
predicts a Gaussian policy πθ(at|st) = N (µ(st), σ(st)) from which the actions are sampled. The
actor/policy loss function is defined in (6).

policyLoss = − log πθ(a|s)Aπθ (s, a) + C1 · actionPenalty (6)

3

Deep$Policy$Network$

Controller$Ac3on$
(from$policy)$

Deep$Value$Network$

Policy$Gradients$
(from$goodness$

of$ac3on)$

Value$

Physics$Engine$

State$Reward$

Figure 1: Policy network maps states to actions. The reward and next state are obtained from the
simulator. State-space representation and state values come from a value network; optimal policies
are computed via policy gradients

The first term in (6) comes from the most commonly used policy gradient estimator [10]. However, it
leads to an undesirable property that a policy with a positive advantage could end up with a larger
loss compared to one with negative advantage. Therefore we tried another loss function with the log
in the first term of (6) removed as shown in (7).

policyLoss = −πθ(a|s)Aπθ (s, a) + C1 · actionPenalty (7)

In practice, we were able to achieve better performance by using (7). However, (7) alone can still
lead to destructively large policy updates. So approaches like trusted region [11] and proximal policy
optimization algorithms [12] should be adopted in the future to ensure better and more stable gradient
updates.

The actionPenalty in the second terms of (6) and (7) is the area under the curve of πθ(a|s) where
the sampled action a can go beyond the limits as listed in Table 1. It is nonzero when the policy
distribution is likely to predict actions that will step out of the bound. To encourage exploration, we
can include an extra term −C2 · entropy in the policy loss. However, in practice, we realized that if
we allow σ to change and encourage large entropy, we could end up with a broad Gaussian policy
which will not be very useful. So we adopted the ε-greedy approach instead, by taking the suggested
action from the policy with a chance of (1− ε)100% and taking a feasible random action otherwise.

4 Experiments and Results

We started the experiment with tuning three action variables, namely the cavity amplitude con-
trol variables of the first two DTL tanks and the phase variable of the second tank. For
this experiment, we launched one agent and used the policy loss function in (7) and a
DNN with one hidden layer of 10 nodes to model the policy and the value function. One

Figure 2: Training episode
length and collected reward.

learning episode ends when 85% of the input beam survives or a
maximum number of training steps of 5000 is reached. We made the
agent to return to the same state at the beginning of every episode.
Figure 2 shows how the length and the collected reward of each
training episode evolves as the training goes on. After the training is
done, the solutions from the learning algorithm is shown in Figure 3.
We can see that the optimal solution is not a single point in the
parameter space. Due to the nonlinearity of the problem, there could
be a band of solutions.

In Fig. 4a, we tested how well the algorithm has learned by starting
randomly in the state space and tracing where the algorithm directed
us. The learned algorithm can lead us to optimal solutions starting
from all the randomly selected initial states even if it has only been
trained to start from a specific one.

4

Figure 3: RL solutions in 3D parameter space and their projects onto 2D spaces. Green dots : optimal
solution from RL. Red dot: starting point of learning. Blue star: domain expert solution. (correction:
the axis label ‘tank 1 phase’ should be replaced with ‘tank 2 phase’).

(a) (Left)Learned RL algorithm finds paths to op-
timal operating conditions (green stars) from ran-
domly selected initial points (red dots) in the ac-
tion parameter space. (Right) Histogram of steps
needed to reach optimal condition. Sample size is
50.

(b) (Left)Training episode length for tuning 5 ac-
tion variables. Max episode length is 700. (Right):
histogram of steps needed to reach optimal solu-
tion. Episodes with steps = 700 failed to reach
optimal solution. Sample size is 200.

Figure 4

When we expanded our training to five action variables (including the cavity amplitude and phase
variable for the third tank of the DTL), the generalization was much poorer compared to training
only three action variables. In Fig.4a, the trained controller was able to start from all the randomly
selected initial states and reach a optimal operating condition within 300 steps, whereas in Fig. 4b),
only 21% of the random initial states lead to successful tuning (reaching the goal within 700 steps).
The controller was stuck in one of the many local minima for the rest of the cases. This is due to
the combined effect of expanding the action variable space and reducing the max number of steps
allowed for each learning episode. For this experiment, we used DNNs with two fully connected
hidden layers (with 40 and 20 nodes).

We launched four agents to simultaneously explore the parameter space from four different randomly
selected initial states. An additional agent was created to monitor the progress of the learning by
simply executing the policy from a pre-defined starting point. The maximum number of steps allowed
for each episode is reduced to 700 for this experiment. In Figure 4b, the training episodes are more
unstable than the previous result with one agent (Fig. 2). This is mainly due to the fact that the agents
now all start from completely different initial states. Some of the initial states might be closer to the
optimal ones than the others. So the best tuning strategy for one of the exploring agents might not
be optimal for the monitoring agent. As learning increased, we observe the episode length and total
reward became more stabilized (Figure 4b) which indicates better generalization. We experimented
with damping the ε parameter which controls how much exploration the RL algorithm is undergoing.

5

0 100 200 300 400 500 600 700
steps

0%

9%

18%

28%

37%

46%

55%

episode length

0 500 1000 1500 2000
steps

0%

9%

18%

28%

37%

46%

55%

reward

0 100 200 300 400 500 600 700
steps

0.0%

5.8%

11.6%

17.4%

23.3%

29.1%

34.9%

40.7%

−500 0 500 1000 1500 2000
steps

0%

12%

23%

35%

47%

58%

70%

81%

Figure 5: Training episode length and reward of the monitoring agent. Five action variables are tuned.

We started from a value of 0.5 and reduced it with each episode. Fig.5 shows the progress made by
the RL algorithm by comparing the histogram of episode length and reward from the first round (top)
to that of the final round (bottom). In the episode length histograms of Fig.5, the rightmost bar at 700
indicates the number of unsuccessful episodes. By the end of the second round, the RL controller
was able to steer beam through the DTL with a success rate of 83% and it can do that with less than
100 steps about 40% of the times.

Figure 6: Beam phase-space distributions at 5 different monitoring locations in LANSCE DTL. The
RL solution (bottom) is as good as the domain expert solution (top).

We have also tried to use a combined network for both actor/policy and critic/value function. It
worked reasonably well and achieved similar results but were harder to train and took more training
rounds to get comparable performance. Figure 6 compares the beam phase distributions resulting
from the RL training (bottom) to those hand-tuned by a physicist, where we see that the results using
our approach look very similar to those of human experts, especially with regard to the size and
orientation of the core of the beam (yellow core in the center).

5 Discussion and Future Work

In order to learn to control more action variables, we may need to adopt approaches like guided
policy search [13] to achieve more efficient training. Since the beam passes through each monitor
sequentially, it is intuitive to consider breaking up the learning process into stages and leveraging
the result from the previous stage to start the tuning for the next one. However, we have observed

6

cases where the best operating set-point for a previous stage of the accelerator ended up being a
bad one in order to get good quality beam for the next stage. In fact, the observables such as the
currents and beam losses can provide only partial information about the goodness of a beam in the
middle of an accelerator. Other quantities such as beam profile are equally important. But there is no
non-interceptive measurements of these quantities available during real-world accelerator operation.
Therefore, when training in a later stage, we need to consider action variable from all the stages.
Future work includes scaling up this to more action variables and thus a bigger search space, and
applying algorithms such as proximal policy optimization [10].

References
[1] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur

Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of
go without human knowledge. nature, 550(7676):354–359, 2017.

[2] R Evans and J Gao. Deepmind ai reduces energy used for cooling google data centers by 40%.
Google Green Blog, 2016.

[3] A. L. Edelen et al. Using neural network control policies for rapid switching between beam
parameters in a free electron laser. Workshop on Deep Learning for Physical Sciences, NIPS,
2017.

[4] A. L. Edelen et al. Neural networks for modeling and control of particle accelerators. IEEE
Transactions on Nuclear Science, 63:878–897, 2016.

[5] A. Scheinker et al. Model-independent particle accelerator tuning. PRSTAB, 16:102803, 2013.
[6] X. Pang and L.J. Rybarcyk. Multi-objective particle swarm and genetic algorithm for the

optimization of the lansce linac operation. NIM-A, 741:124–129, 2014.
[7] V. Mnih et al. Asynchronous methods for deep reinforcement learning. ICML, 48:1928–1937,

2016.
[8] HPSim. https://github.com/apphys/hpsim.
[9] OpenAI Gym. https://gym.openai.com/.

[10] Sergey Levine. Policy gradients. UC Berkeley CS294 Deep Reinforcement Learning, 2017.
[11] J. Schulman et al. Trust region policy optimization. CoRR, abs/1502.05477, 2015.
[12] J. Schulman et al. Proximal policy optimization algorithm. CoRR, 2017.
[13] S. Levine and V. Koltun. Guided policy search. ICML, 2013a.

7

	Introduction
	Reinforcement Learning Background
	Problem Statement and Method
	Experiments and Results
	Discussion and Future Work

