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Abstract

Local-gradient-based optimization approaches lack nonlocal exploration ability
required for escaping from local minima when searching non-convex landscapes.
A directional Gaussian smoothing (DGS) approach was recently proposed in [29]
and used to define a truly nonlocal gradient, referred to as the DGS gradient, in
order to enable nonlocal exploration in high-dimensional black-box optimization.
Promising results show that replacing the traditional local gradient with the nonlocal
DGS gradient can significantly improve the performance of gradient-based methods
in optimizing highly multi-modal loss functions. However, the current DGS method
is designed for unbounded and uncontrained optimization problems, making it
inapplicable to real-world engineering optimization problems where the tuning
parameters are often bounded and the loss function is usually constrained by
physical processes. In this work, we propose to extend to the DGS approach
to the constrained inverse design framework in order to find better optima of
multi-modal loss functions. A series of adaptive strategies for smoothing radius
and learning rate updating are developed to improve the computational efficiency
and robustness. Our methodology is demonstrated by an example of designing a
nanoscale wavelength demultiplexer, and shows superior performance compared to
the state-of-the-art approaches. By incorporating volume constraints, the optimized
design achieves an equivalently high performance but significantly reduces the
amount of material usage.

1 Introduction

There recently have been significant interests in using computational inverse design approaches to
explore the full design space of novel nanophotonic devices with a broad variety of applications
[24, 17, 2, 18, 10, 28, 23, 13]. Much of this progress is made by the gradient-based optimization that
is a promising method to efficiently search the enormous degrees of freedom in high-dimensional
design spaces. The gradient-based optimization typically relies on the adjoint method [11, 3],
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which calculates the local gradient of a loss function with respect to the design variables by solving
differential equations, i.e., the adjoint equation [12, 8]. However, the adjoint method basically
depends on an efficient estimation or analytical formulation of the adjoint equation. Typically, some
assumptions are often made for simplicity to utilize gradient-based optimization. For example,
electromagnetism is modeled using Maxwell’s equations assuming statics, linear, homogeneous,
and isotropic materials as well as time-harmonic behavior of the field [6]. All of these assumptions
lead to a large challenge in real-world nanophotonic design with dynamic, nonlinear, and dispersive
material properties in multiphysics conditions [9]. In addition, for complicated objective functions
and constraints, gradient estimation with adjoint method may be either not easily accessible or
unreliable. Sometimes, additional efforts are required to derive the gradient if unusual objectives or
constraints are incorporated into the optimization formulation [24, 8].

Another important challenge is that, up to now, most studies use local gradient-based approaches for
inverse design so that the optimized devices converge to a local minimum. In many electromagnetic
design problems, their landscapes have been proven to be highly nonlinear and non-convex such that
many possible local minima exist [15, 24]. These local minima depend on the initialization and vary
largely as the initial guess changes. These challenges in gradient-based approaches have attracted
much attention [24, 14, 7, 4]. Several gradient-free algorithms such as Bayesian optimization are
used to explore the global minima but finding the optimal solution to complex high-dimensional,
multimodal problems often converges very slowly and requires very expensive loss function evalua-
tions [21]. Additionally, it is important to impose fabrication ((also material usage) constraints into
design optimization workflow because a fundamental challenge in nanophotonics is that arbitrary
permittivity distribution including tiny feature and grey-scale value, can not be fabricated in practice
[3,27, 19]. Although stochastic algorithms, e.g., SGD, Adam, and RMSProp, have widely used in the
machine learning community, it is still a non-trivial task to incorporate multiple equality or inequality
constraints into these stochastic methods because they mainly focus on unconstrained optimization
tasks like neural network training.

To address these challenges, we propose a nonlocal inverse design workflow by incorporating
the nonlocal gradient that was recently developed in [29]. The nonlocal gradient was defined by
directional Gaussian smoothing, thus it is referred to as the DGS gradient hereinafter. The DGS
gradient conducts 1D nonlocal explorations along with d orthogonal directions and each of which
defines a nonlocal directional derivative as a 1D integral. The d directional derivatives are assembled
to the DGS gradient. The Gauss-Hermite (GH) quadrature is used to approximate the 1D integrals
(i.e., the directionsl derivatives) to achieve a higher accuracy than Monte Carlo (MC) sampling. We
improved the existing DGS approach from two perspectives in the context of inverse design. First,
we established a workflow in which the DGS gradient can be combined with a variety of constraints,
e.g., fabrication constraints and materials usage constraint in the practical material design. Second,
we developed a series of adaptive strategies for the smoothing radius and the learning rate in order
to improve computational efficiency and robustness. Compared to the local gradient method, the
directional smoothing allows for a large smoothing radius to capture the global structure of loss
landscapes and thus provide a strong nonlocal exploration capability for escaping from local minima
in non-convex landscapes. Furthermore, our workflow h multiple assumptions for simplicity so that
it has wider feasibility to nonlinear, dynamic, and non-isotropic materials under complex physical
conditions. In the meantime, our method having the benefits of gradient-based optimization can be
easily scaled to high-dimensional design space, which alleviates the challenges in derivative-free
global optimization, such as Bayesian optimization.

2 The nonlocal DGS gradient for optimization

Considering a general black-box optimization problem: ming,cga F (), where = (21,...,24) €
R consists of d inputs, and F' : R? — R is a d-dimensional loss function, we assume that the
gradient V F'(x) is unavailable, and F'(z) is only accessible via function evaluations.

The traditional Gaussian smoothing To better explain the DGS strategy, we briefly recall the
standard Gaussian smoothing [16] for estimating local gradients. Specifically, it starts by defining
a smoothed loss function Fi, (x) = Eqar(0,1,) [F (X + ou)], where N'(0,1,) is the d-dimensional
standard Gaussian distribution, and o > 0 is the smoothing radius. Then, the gradient VF,(x) can



be represented as an expectation and estimated by drawing M samples {w,, }M_, from N(0,1,)
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The Monte Carlo (MC) estimator in Eq. (1) is substituted into any gradient-based algorithm to update
the state x. The major drawback is that the error of the MC estimator in Eq. (1) is on the order of
€ ~ O(do/v/M). When the dimension d is large (e.g., on the order of thousands) and the computing
budget (the upper bound of M) is given, practitioners often have to sacrifice a nonlocal smoothing
effect (with a relatively big o) that helps skipping local mimina to achieve a required accuracy. In
other words, Eq. (1) is mostly used in the local regime with a small value for o.

The nonlocal DGS gradient The DGS gradient was developed to alleviate the above challenge
with the standard Gaussian smoothing. The key idea behind the DGS gradient is to conduct 1D
nonlocal explorations along d orthogonal directions in R?, each of which defines a nonlocal directional
derivative as a 1D integral. The Gauss-Hermite quadrature is used to estimate the d 1D integrals
to achieve high accuracy. Specifically, we first define a 1D cross section of F'(x) as G(y | x,§) =
F(x+y€), y € R, where x is the current state of F'(x) and £ is a unit vector in R%. The Gaussian
smoothing of G(y), denoted by G, (y), is defined by
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This is also the Gaussian smoothing of F'(x) along the direction £ in the neighbourhood of x. The
derivative of G, (y|x, €) at y = 0 can be represented by a 1D integral

(G (01%8)] = ~ Eurion [Glov ] %,€)0], G)

where 2] denotes the differential operator. We emphasize that Eq. (3) is fundamentally different
from the directional derivative of F,, (x), because G, (0 | x, &) only conducts the directional smoothing
along &. For a matrix 2 := (&,...,&4) consisting of d orthonormal vectors, we can define d
directional derivatives like those in Eq. (3) and assemble our DGS gradient as

Vo zlFI(x) i= [2[Go (0] %, &), Z[Go(0|x,€0)]| &, @

where the orthogonal system = and the smoothing radius o can be adjusted during an optimization
process. The next step is to develop an accurate DGS estimator. Since each component of V, =[F'](x)
only involves a 1D integral, such that the Gauss-Hermite quadrature rule [20, 1] can be used to
approximate the integrals with high accuracy (shown in Eq. (6)). By doing a simple change of
variable in Eq. (3), the GH rule can be directly used to obtain the following estimator for each
directional derivative 2[G,(0|x,&)] in Eq. (3)

M
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m=1

where {v,,, }1_, are the roots of the M-th order Hermite polynomial and {w,, }*._, are quadrature
weights. Both v,,, and w,, can be found online! orin [1]. Compared with MC sampling, the error of
Eq. (5) can be bounded by

(2™ — 2)[G,]| < 0%021111’

where M is the factorial of M and the constant C' > 0 is independent of M and o. Applying the GH
quadrature rule 2™ to each component of V, =[F](x) in Eq. (4), we define the following estimator:

(6)

VILIFIx) = [ 2Y(Go (0] %, €0, . 2M[Go (0], €))| B, ™

In illustration of the difference between the DGS gradient and local gradient is given in Figure 1. We
herein discuss some important features of the DGS gradient and the GH quadrature estimator.

'Nodes and weights for GH quadrature: https://keisan.casio.com/exec/system/1281195844
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* Nonlocality: The directional smoothing allows for a large radius o to capture global structures of
loss landscapes and help escape from local minima.

* Accuracy: The GH quadrature with the error bounded in Eq. (6) provides an estimator having
much higher accuracy than MC, even when a large smoothing radius o is used.

* Portability: The DGS gradient can be integrated into a majority of gradient-based algorithms, e.g.,
gradient descent, Adam, and those with constraints.

* Scalability: The DGS estimator in Eq. (7) requires M x d evaluations of F'(x), and these evaluations
are completely parallelizable as those in random sampling.

A mathematical example To illustrate the performance of the DGS gradient, we combine the
DGS gradient with the standard gradient descent algorithm to optimize the 1000D Ackley function,
which is one of the benchmark functions used to test non-convex optimization algorithms. As shown
in Figure 1 (Middle), the Ackley function has many local minima which pose significant challenges
for optimization. Figure 1 (Right) shows that the DGS gradient exploited its nonlocal exploration
ability to skip the local minima and converge to the global minimum F'(x) = 0. DGS gradient
successfully found the global minimum while the other baselines are trapped in local minima.

The 2D Ackley function Loss decay for 1000D Ackley
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Figure 1: (Left) Illustration of the nonlocal exploration capability of our DGS gradient. In the central
plot, the blue arrow points to the local gradient direction and the red arrow points to the DGS gradient
direction. The top and right plots show the directionally smoothed functions along the two axes.
Because the DGS gradient captures the nonlocal features of F', it can point to a direction much closer
to the global minimum than the local gradient. (Middle) The landscape of the 2D Ackley function
that possesses many local minima. (Right) Comparison of the loss decay w.r.t. # function evaluations
for the 1000D Ackley function.

3 Inverse design workflow with nonlocal DGS gradient

Optimization problem formulation A general electromagnetic design problem can be cast into
the following optimization formulation:

min  f(Eq1,....,E,, €1,..., €y,X)
subjectto g¢;(x) =0, j=1,...,m 3)
hie(x) <0, k=1,..,1
where E; is the electric field corresponding to the permittivity distribution €;, which depends on a
parameterization vector x € R which is the computational design domain, and f is the objective

function that defines the target of the optimization. A typical objective is to maximize the transmission,
which is equivalent to minimize the negative

Jorj(x) = —|c'E(e(x))]?,  c"E(e(x)) = //SC'E(G(X))dS ©)
where c¢'E means the overlap integrals to compute the model coupling efficiency of the electric

field E with the target mode at the output ¢. h(x) and g;(x) in Eq. (8) are inequality and equality
constraints on x, particularly fabrication and volume of materials constraints. For the optimization



problem in Eq. (8), the electric fields E; generated by the input permittivity distribution €(x) should
satisfy the Maxwell’s equations in the frequency domain,

1
V x =V x EZ‘ — w?e(x)Ei = —iwiJi (10)
I

where ¢ = 1, ..., n is the input modes, w; is the angular frequency, p is the magnetic permeability
of free space and J; is the input source which injects the current mode into the input waveguide.
Eq. (10) is often solved by electromagnetic simulation using the finite-difference frequency-domain
(FDFD) method [5] or finite-difference time-domain (FDTD) method [25].

Parameterization and constraints in optimization Solving the optimization problem defined
in Eq. (8) led to continuously varying features of €(x), which is difficult for fabricating devices in
practice. It is therefore critical to describe the permittivity distribution through a parameterization that
addresses the fabrication challenges in device design [24]. Parameterization basically consists of two
key components: projection operator and filtering operator. Projection operator aims to convert the
continuous features to a binary feature that better captures a clear “0-1” design, where “0” represents
a background material and “1” represents a foreground material in permittivity distribution. This can
be achieved by defining an operator through the equation €(x) = €,(x) + H(p(x)) ,where €,(x) is a
permittivity background (constant) and ¢(x) is a 2D slice of the permittivity distribution and ranges
from O to 1. A possible projection operator H is using nonlinear penalty methods [11, 12]. Filtering
operator is often used to eliminate very tiny features and avoid to the formation of checker-board
pattern in material layout [22]. Another common constraint in optimizing material layout is the
volume fraction of material usage, V' (x)/Vy < ~, where V' and V}, are the expected material volume
and design volume respectively, and - is the specific volume fraction.

Methodology workflow Figure 2 shows the workflow to implement DGS-based nonlocal opti-
mization method for inverse design with four core components, that are parameterization, physics
simulation, objective formulation and optimization.

Objective formulation Nonlocal optimization

Convolution Nonlinear Maxwell’s equation Overlap Constraints DGS Radius
filtering projection using FDFD integral  (volume) operator decay

x=x-/{-g

Figure 2: The proposed inverse design workflow with nonlocal DGS gradient-based optimization

4 Wavelength demultiplexer example

As shown in Figure 3, we choose a three-port structure with 500 nm input waveguide and output
waveguides and a square 2.5 ym X 2.5 um design region. We design a device for the 220 nm
silicon-on-insulator (SOI) platform where the structure is constrained to a single fully etched Si layer
on a SiO substrate with air cladding. For illustration, the refractive indices of 14, = 1, nsio, = 1.45
and ng; = 3.5 are used. The purpose of inverse design is to separate 1300 nm signal to the upper
waveguide and 1500 nm signal to the bottom waveguide.

The final optimized design and the corresponding electric field intensity are diagrammed in Figure 4.
Note that the device designed by nonlocal optimization method using the DGS gradient, shown
in Figure 4, displays a nonintuitive geometry while retaining relatively large features and a clear
permittivity distribution with ideal binarization. The light takes a relatively confined path through
the structure at both wavelengths. The optimization history, shown in Figure 3, provides iterative
changes of the permittivity distribution during the optimization process. It is clear to note that
the local gradient shows a fast convergence but it quickly traps into a local minimum and difficult
to escape even though a large number of evaluations are performed. On the contrary, the DGS
outperformance the local method and converges to a better solution, ffsg = 13.58, that performs
~ 10% improvement compared with the local gradient method that is f* ,, = 12.40.

Robustness performance In this case, we repeatably run 100 times optimization with three
different levels of randomness described by Gaussian noise: N (0,0.1), N(0,0.05) and N(0,0.01).
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Figure 3: (Left) Illustration of wavelength demultiplexer design. The structure consists of one input
waveguide (port 1) and two output waveguides (port 2 and port 3). The outer hatched light blue frame
represents the simulation domain, specifically, the perfectly matched layer (PML) boundaries. The
goal of inverse design is route to 1.3 um through the top waveguide and 1.5 pm through the bottom
waveguide. (Right) Optimization iteration history.
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Figure 4: Electric field intensity of the optimized device at 1500 nm (Left) and 1300 nm (Middle), as
well as the optimized permittivity distribution (Right) using optimization method with DGS gradient

The histogram of final objective values, as shown in Figure 5 (a-c), shows the distribution of the
final objective values using the nonlocal optimization method with DGS gradient and local gradient.
The nonlocal method outperforms the local gradient in terms of the objective values and shows a
smaller variation in all three levels of randomness. In other words, the nonlocal method demonstrates
stronger robustness and reliability to resist the local minima caused by random initialization.
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Figure 5: Objective function values of 100 local minmia given different noise levels. Dark color
represents the distribution using the nonlocal optimization method with DGS gradient and light color
represents the distribution using local gradient algorithm. The first three columns represent the three
noise levels and the right column displays a fact that there is no obvious correlation between the
volume fraction and final objective values.

Inverse design optimization with volume constraint We conduct a study to investigate the
influence of material volume constraint. Most cases of volume fraction - in Figure 5 (d) concentrates
in 0.45—0.65 and no cases are lower than 0.35. We therefore reformulate the optimization by adding
a volume constraint and solve this constrained optimization problem using the Method of Moving
Asymptotes (MMA) [26]. However, MMA is limited to seek optima using local gradients information,
either via adjoint method or finite difference. We address this challenge by inserting the DGS gradient
into the MMA optimizer so that we can exploit the nonlocal exploration of the DGS operator to
search for a better design. The final designed devices with three different amounts of material usage
are shown in Figure 6.
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Figure 6: A three-dimensional rendering of the optimized design. Silicon is shown in grey and light
enters the optimized device from the input waveguide on the left-hand side (port 1) and exits via one
of the two output waveguides (port 2 and port 3) on the right side. There are three optimized devices
with different volume fraction: (left) v = 0.474, (middel) v = 0.3 and (right) v = 0.2.

5 Conclusion

This work focuses on the development of a nonlocal method for computational inverse design in
nanophotonics. A novel DGS gradient is introduced into inverse design to improve the nonlocal
exploration required for escaping from local minima in high-dimensional non-convex landscapes.
Our approach has advantages in portability and flexibility so that it is naturally incorporated with
parameterization, physics simulation, and objective formulation to build up an effective optimization
workflow for inverse design. The proposed method is demonstrated on benchmark mathematical
functions and a real-world wavelength demultiplexer design problem.
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