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Abstract

Imaging modalities provide clinicians with real-time visualization of anatomical
regions of interest (ROI) for the purpose of minimally invasive surgery. During
the procedure, low-resolution image data are acquired and registered with high-
resolution preoperative 3D reconstruction to guide the execution of surgical preplan.
Unfortunately, due to the potential large strain and nonlinearities in the deformation
of soft biological tissues, significant mismatch may be observed between ROI
shapes during pre- and intra-operative imaging stages, making the surgical preplan
prone to failure. In an effort to bridge the gap between the two imaging stages,
this paper presents a data-driven approach based on artificial neural network for
predicting the ROI deformation in real time with sparsely registered fiducial mark-
ers. For a head-and-neck tumor model with an average maximum displacement
of 30 mm, the maximum surface offsets between benchmarks and predictions
using the proposed approach for 98% of the test cases are under 1.0 mm, which
is the typical resolution of high-quality interventional ultrasound. Each of the
prediction processes takes less than 0.5 s. With the resulting prediction accuracy
and computational efficiency, the proposed approach demonstrates its potential to
be clinically relevant.
Keywords: Soft Tissue Deformation, Real-time Deformation Prediction, Data-
Driven Shape Reconstruction, Finite Element Method, Artificial Neural Network,
Image-Guided Surgery

1 Introduction

In image-guided surgery [1], the surgical region of interest (ROI) is initially scanned under imaging
modalities such as CT or MRI to create the three-dimensional (3D) reconstruction of the ROI, which is
utilized afterwards for creating patient-specific surgical preplan. During the surgery, an intraoperative
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imaging modality such as interventional ultrasound is adopted to register the observed ROI with its
pre-surgical reconstruction and to monitor the execution process of the preplan. However, due to the
highly compliant nature of biological tissues, a major challenge that often hinders the success of such
image-guided surgery is the shape mismatch caused by the ROI deformation during surgery when
compared with its pre-surgical reconstruction. Such a mismatch may lead to significant execution
inaccuracy during the course of surgical operation and subsequently fail the preplan.

Figure 1: Flowchart of using proposed scheme for predicting tissue deformation during procedure.

To address this problem, previous studies have explored different ways of accurately tracking soft
tissue deformation intraoperatively. An extensively studied approach is to combine pre/intra-surgical
observations with physically-based numerical simulation methods [2] such as finite element method
(FEM) [3–11]. Specifically, FEM is employed for predicting the target model’s deformation by
prescribing the boundary conditions (BCs) to match its intraoperative observations. By following
similar deformation schemes, surgical simulation systems [12–14] and navigation tools [15] are
developed to serve as assistive tools to increase the guidance accuracy and to facilitate less invasive
interventions. However, one limitation in the previous work is the need for repetitive forward FEM
processes, which is usually computationally prohibitive especially for ROIs with complex geometric
features, complicated interactions with environments, and/or nonlinear materials that require iterative
solution schemes, thereby limiting their applicability under real-time scenarios. Recently, researchers
have begun to combine FEM with machine learning (ML) techniques for calculating intraoperative
deformation of soft biological tissues [16–21] and accelerating the forward simulation process [22].
With the research work mentioned above, however, there still remains a question of how accurately
the BCs are applied based on the observed FM tracking. In addition, it is common in practice that
only limited information for spatial registration within the ROI is available, and the deformation
of the tissue is often irregular and with large strains. Therefore, it is highly desirable to have a
method that is able to predict the ROI deformation in real time, based on limited intraoperative
registration information and maintain a desirable reconstruction performance for complex, large,
nonlinear deformation scenarios.

In this paper, a data-driven approach based on an artificial neural network (ANN) is proposed
for real-time prediction of soft tissue deformations using sparsely registered landmark locations
(fiducial bio-markers (FMs)) during surgery. Before surgery, the proposed approach takes input as
the presurgical reconstruction of ROI geometry and a set of FM locations to create a large dataset
of benchmark deformations using the eigen-decomposition of Laplace-Beltrami operator (LBO).
The principle components (PCs) of the ROI deformation (displacement field) are then extracted
for efficient ANN training and deformation reconstruction. After the ANN is well trained on the
simulated deformation benchmarks, during the surgery, the intraoperatively registered FMs are
supplied to the ANN to generate accurate deformation predictions in real time (around 0.5 s). The
performance of the proposed approach is quantitatively evaluated by comparing its prediction with the
one obtained from ridge regression. With the fast and accurate prediction results on large nonlinear

2



deformation cases, we demonstrate our approach’s potential to be clinically relevant in this presented
work.

2 Methodology

To illustrate our scheme, the 3D model of a head-and-neck (H&N) squamous carcinoma is used
throughout Section 2. As shown in Figure 1, the pipeline of our proposed approach includes: (1)
generating a preoperative 3D reconstruction for the patient specific surgical ROI and selecting nodes
from the mesh as FMs, (2) generating a large deformation dataset using nonlinear FEM simulations
and tracking the displacements of the selected FMs, (3) creating low-dimensional representations
of the deformation by applying principal component analysis (PCA) to the generated dataset, (4)
training an ANN on the pre-generated dataset formed by FMs’ displacements and the corresponding
low-dimensional representations of the deformation fields, and (5) reconstructing deformation fields
of the unseen external test samples with the input of their FMs’ displacements. To demonstrate
the performance of our proposed ANN-based methodology, we also introduce a more classical
data-driven approach based on ridge regression as the baseline method. The parameters of the H&N
tumor model as well as the nonlinearities of the FEM solver is detailed in Section A2.

2.1 Dataset generation with nonlinear FEM solver

We firstly discretize the H&N tumor geometry into tetrahedral elements and pick nd nodes in the
tetrahedral mesh as FMs in order to track their displacements. To ensure that the FMs are sparsely
and homogeneously distributed within the geometry, k-center clustering is implemented (detailed in
Section A1). For dataset generation, we apply different force fields to the geometry’s outer surface and
use FEM software Abaqus as the nonlinear finite element solver to simulate the tumor’s deformation
in different load cases. The fixed points of the geometry are prescribed in advance, which do not
overlap with the picked FMs and do not change with the force fields. The displacements of FMs
d ∈ R3nd×1 are tracked and recorded specifically as a one-dimensional vector for each deformed tumor
sample.

Tumors typically develop and are situated in surrounding soft tissues. To mimic this phenomenon, we
constrain the synthetically generated force fields for data-set generation to be smooth and applied only
to the tumor’s outer surface. Therefore, we employ the LBO ∆LB to the outer surface’s shape function
S (x, y, z) to capture its curvature features and encode them in ∆LBS . To create smooth force fields,
we firstly implement eigen-decompostition to ∆LBS , and then use its first 20 principal components to
build LBO-reconstructed force field fLBO ∈ R

3ns×1 with an arbitrarily generated weight vector fR by
following the equation: fLBO = α ·∆LBS · fR, where ns is the number of vertices on the outer surface, α
is a scalar to control the magnitude of the created force fields. This approach allows arbitrary smooth
force fields to be sampled and utilized to generate the training data for deformation prediction.

2.2 Low-dimensional representation of the dataset

After the dataset is created, the deformation of each sample can be represented as a vector x ∈ R3nv×1.
However, since nv is usually large for a mesh with good quality, it can be very difficult for a neural
network to directly generate a high-dimensional output of the vector with all the nodes’ deformation.
To capture a lower dimensional embedding of the computed deformations fields, we apply PCA
to the entire dataset to extract a linear deformation basis P ∈ R3nv×nw (nw < 3nv) of the dataset and
effectively encode the deformation in a low-dimensional weights vector w ∈ Rnw×1 by following the
equation w = PT x, where nw is the number of principal components. By choosing a proper nw, the
information loss through PCA can be minimized and the performance of reconstruction from weight
vector to the whole deformation field can be made arbitrarily accurate. For H&N tumor model, we
use 27 PCs to encode the tumor’s deformation (according to the parameterization results detailed
in Section A4). Each sample in the generated deformation dataset corresponds to a unique weight
vector, which is used to train the neural network.

2.3 ANN training and deformation reconstruction

We train the ANN with the input of FM’s displacement vector d and the output of the corresponding
encoded weight vector w. We use a multilayer perceptron with 2 hidden layers as the ANN’s
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architecture. A dataset of 2000 samples with different deformation fields is split by 8:1:1 into three
subsets Gtrain, Gvalid and Gtest1. For the H&N tumor model, the maximum geometric dimension is
rescaled to 70 mm, and the maximum deformation of all deformed samples reaches nearly 30 mm.
Each sample in the dataset consists of ds and their corresponding ws, and the ANN is trained using
the Mean Squared Error (MSE) of ws as the loss function. The combination of [n1, n2] = [128, 64]
(128 neurons in the first layer, 64 neurons in the second layer) is chosen as the ANN’s hidden layer
structure after parameterization (details of parameterization are elaborated in Section 3.2). Other
training process related hyperparameters are detailed in Table 1.

Table 1: Hyperparameters of benchmark dataset and ANN training for the H&N tumor model.
Model Parameter Symbol Value

Number of samples in Gtrain ntrain 2000
Number of samples in Gtest1 or Gtest2 ntest1 or ntest2 200
Number of neurons [layer1, layer2] [n1, n2] [128, 64]
Number of FMs nD 5
Maximum displacement in test samples xtest_max 30 mm
Training epochs epochtrain 12000
Batch size bs 20

The trained ANN is able to predict the weight vector w′ ∈ Rnw×1 of samples with different deformation
fields with the input of corresponding FM’s displacement vectors. For performance testing of the
trained ANN, we establish two different test datasets Gtest1 and Gtest2, the latter of which is created
with a completely different force field generation strategy (detailed in Section A3). The deformation
reconstruction of samples follows Eq. 1:

 |x′j
|


nv×1

= Pw′ =

 | | . . . | . . . |

p1 p2 . . . pi . . . pnw

| | . . . | . . . |


nv×nw



w′1
w′2
. . .
w′i
. . .
w′nw


nw×1

; j ∈ {x, y, z} (1)

where x′ denotes the reconstructed full-size deformation vector with displacements of all nodes.

2.4 Ridge regression and deformation reconstruction

We use ridge regression as the baseline to solve for the reconstruction weights. The function
parameters are detailed in Table 2 and the objective function is shown in Eq. 2.

Table 2: Ridge regression parameters.
Parameter Symbol Dimension

Nodal displacements of a single deformation benchmark xRR R3nv×1

Mean nodal displacement across all benchmarks x̄RR R3nv×1

Ground truth nodal displacement of nd FMs dRR R3nd×1

Binary indicator matrix 3 DxRR = dRR D R3nd×3nv

Principal components PRR R3nv×nw

Principal component reconstruction weights wRR Rnw×1

g(wRR) = min
wRR

[
a1(||D(PRRwRR + x̄RR) − dRR||

2
2) + a2wT

RRwRR

]
= min

wRR

[
a1(D(PRRwRR + x̄RR) − dRR)T (D(PRRwRR + x̄RR) − dRR) + a2wT

RRwRR

] (2)
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The objective function g(wRR) (Eq. 2) minimizes the difference between reconstructed and ground
truth fiducial marker displacements uRR = D(PRRwRR+ x̄RR)−dRR with respect to the weight vector wRR.
The coefficients a1 and a2 are weighting terms with a1 >> a2. The L2 regularization term wT

RRwRR is
weighted very lightly. The optimal ratio of a2/a1 = 1/1000 is obtained through a parametric study.

2.5 Evaluation metrics

The evaluation metric is formulated to quantify the mismatch between the benchmarks and predicted
configurations. The mean nodal offset and max nodal offset are calculated following Eq. 3 and Eq. 4,

Offsetmean =

∑
||xi

bench − xi
pred ||L2

nv
(3)

Offsetmax = max
i
||xi

bench − xi
pred ||L2 (4)

where xi
bench and xi

pred are 3 × 1 displacement vectors of vertex i in benchmark and prediction and nv

is the total number of vertices.

3 Results and discussions

Figure 2: Reconstruction performance of our proposed approach and the Ridge Regression method
on dataset Gtest1 and Gtest2, respectively. (a1), (a2), (b1), (b2) visualize the matching between the
undeformed (reference) configuration (in yellow), the reconstructed deformed configuration (in green
or red), and the corresponding benchmark deformed configuration (in blue). (a3) and (b3) show
the average of Offsetmax and Offsetmean of the two approaches on Gtest1 and Gtest2, respectively, the
boxplots of which are separately represented in (a4) and (b4).

Following the strategy introduced in Section 2.5, we report reconstruction performances of the
aforementioned methodologies for the H&N tumor model. The ANN is implemented with PyTorch
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1.6.0, and all implementations demonstrated in this paper are completed using a consumer-grade
CPU (4-core Intel I7-8550U @ 1.80GHz). Parametric studies are performed on ANN training and
deformation reconstruction related parameters. Overall, the proposed approach enables fast and
accurate deformation reconstruction of soft tissues and outperforms the method of ridge regression,
the chosen baseline model in the paper.

3.1 Evaluation on deformation reconstruction performance

We evaluate the reconstruction performance of the proposed approach and the baseline model,
respectively. For H&N tumor, nd = 5 FMs are chosen from the tetrahedral mesh according to
the parameterization result. Figures 2(a1) and (b1) depict the comparison between the benchmark
deformed configuration (in blue) and the ANN-reconstructed deformed configuration (in green) of a
tested sample. Compared to the reconstruction results from the ridge regression (shown in Figures
2(a2) and (b2)), the reconstruction quality of the trained ANN is dramatically better than that of
the baseline model; the boxplots of Offsetmax and Offsetmean (shown in Figures 2(a4) and (b4)) also
evidence this advantage of our proposed approach over the baseline method.

The average of Offsetmax and Offsetmean as well as the reconstruction time of both methods on Gtest1
and Gtest2 are shown in Figure 2(a3) and (b3), respectively. It can be concluded that the predicted
shapes generated from our proposed approach are very close (1.5% error compared to the tumor’s
maximum dimension) to their corresponding benchmark deformed configurations; on an unseen
dataset generated by a completely different force field generation strategy of the training dataset, the
trained ANN still maintains its high reconstruction accuracy in terms of the model’s maximum and
average nodal offset, demonstrating the approach’s robustness. Regarding the reconstruction speed,
our proposed approach generates deformed shapes within 0.5 s, which is markedly faster than the
method of ridge regression and shows its capability of real-time reconstruction; the decrease of the
baseline model’s reconstruction speed should account for the weights searching process, which is
test-dataset-dependent and sensitive to the size of the dataset.

3.2 Parametric studies

For the parametric study of the ANN architecture, we explore different hidden layer structures and
conduct parameterization based on their reconstruction performances on Gtest1. To reduce the time
cost for ANN training as well as the workload of parameterization, we only evaluate combinations of
two hidden layers ([n1, n2]), each of which has a feasible neuron number list of 32, 64, 128 and 256
(resulting in a total of 16 possible combinations). Table 3 shows the results of the average of Offsetmax
and the elapsed time for training of all aforementioned architectures. Each of the architectures is
trained three times, and the eventual result takes the average. Considering both the time efficiency
of training process and the reconstruction quality, we choose the combination of [128, 64], which
has relatively smallest average of Offsetmax and moderate training time, as the optimal hidden layer
structure.

Table 3: Parameterization results on ANN’s two-layer hidden structures [n1, n2].
[n1, n2] Average of Offsetmax (mm) Training time (s)

n1

n2 32 64 128 256 32 64 128 256

32 0.590 0.538 0.544 0.574 747.285 732.081 788.877 1060.461
64 0.634 0.548 0.550 0.572 742.404 796.133 973.967 1244.056

128 0.893 0.533 0.539 0.575 815.583 1021.863 1255.345 1702.576
256 0.804 0.535 0.562 0.582 995.713 1255.417 1693.827 2668.229

We also conduct parametric studies on nd and nw, the result of which are listed in Section A5. We
select nd = 5 and nw = 27 in our implementation.
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4 Conclusion

In this paper, a data-driven approach for predicting intraoperative soft tissue deformation based on
FM registration is developed. The proposed approach incorporates both physically-based simulations
and machine learning. For an H&N tumor model with maximum displacement of nearly 30 mm, our
approach is able to yield deformation predictions with sub-millimeter accuracy, which is the typical
resolution of interventional ultrasound. Parametric studies on the number of FMs, number of PCs
and ANN’s hidden layer architecture are performed to characterize the proposed prediction model.
Further tests on models with various geometries and topologies have demonstrated the generality
of our proposed approach. After the ANN is well trained, the deformation prediction of one case
takes less than 0.5 s, showing this work’s potential for real-time applications such as intraoperative
tracking of soft tissues.

Broader Impact. The proposed approach can achieve real-time accurate deformation reconstruction
of soft tissues. Although the pipeline is initial geometry dependent, it can still be utilized in patient-
specific scenarios and assist surgeons to quickly reconstruct the deformed reconstruction by merely
taking inputs from a few FMs. Overall, the presented study has demonstrated its potential to be
clinically relevant.
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Appendix
A1 Revised K-center clustering

Section 2.1 introduces the revised K-center clustering algorithm for FM searching. Algorithm 1
shows the pseudocode detailing the implementation of the aforementioned algorithm.

Algorithm 1: Revised K-center clustering
Input :Node set V , initial node v0, number of centers k, minimal distance threshold dmin
Output :The list of all searched centers VC

1 begin
2 Initialize i←− 0, VC ←− ∅, S ←− ∅; Add v0 −→ VC;
3 while i < k do
4 Set maxAvg←− 0, minVar ←− 1e5, vnew ←− ∅;
5 foreach v j ∈ V do
6 if v j ∈ VC then
7 Skip to the next loop;
8 else
9 S ←− ∅;

10 foreach cm ∈ VC do
11 Compute euclidean distance between v j and cm: dm = norm(v j, cm);
12 Add dm −→ S ;
13 end
14 Compute average of S : avg j = avg(S );
15 Compute minimum of S : min j = min(S );
16 if avg j > maxAvg and min j > dmin then
17 vnew ←− v j;
18 maxAvg←− avg j;
19 else
20 Skip to the next loop;
21 end
22 end
23 end
24 Add vnew −→ VC; Set vnew ←− ∅;
25 foreach vn ∈ V do
26 if vn ∈ VC then
27 Skip to the next loop;
28 else
29 S ←− ∅;
30 foreach cp ∈ VC do
31 Compute euclidean distance between vn and cp: dp = norm(vn, cp);
32 Add dp −→ S ;
33 end
34 Compute variance of S : varn = var(S );
35 Compute minimum of S : minn = min(S );
36 if varn < minVar and minn > dmin then
37 vnew ←− vn;
38 minVar ←− varn;
39 else
40 Skip to the next loop;
41 end
42 end
43 end
44 Add vnew −→ VC; i←− i + 1;
45 end
46 end

10



The conventional K-center clustering algorithm iteratively searches the farthest point from the pre-
obtained centers within a specific closed geometry [23]. To homogeneously distribute FMs in the
target geometry, the revised K-center clustering algorithm simultaneously maximizes the average and
minimizes the variance of distances among the selected centers. In this paper, the minimal distance
threshold between two center points dmin is set to 10 mm; two sub-loops are implemented in the
algorithm to alternately obtain the point with the maximum distance average and the point with the
minimum distance variance. With an initial point specified, the algorithm can automatically search the
next best center point candidate based on the positions of pre-obtained centers and iteratively distribute
the required number of center points within a closed mesh topology. Figure A1 shows FMs captured
by the algorithm with different numbers of iterations (i.e. number of points k) within the H&N
tumor model, evidencing that the revised K-center clustering algorithm enables the homogeneous
distribution of FMs with arbitrarily specified k.

Figure A1: Distribution of different numbers (ks) of FMs in H&N tumor model. Starting at the initial
node index of 97, the red asterisks represent the centers obtained by the revised K-center clustering
algorithm. k = 5 is eventually selected for implementations in this paper.

A2 Introduction to modeling parameters and FEM nonlinearities

The H&N tumor studied in the paper is CT scanned and reconstructed using the commercial Synopsys’
Simpleware™ software and tetrahedralized in Netgen [24]. The parameters of modeling and property
definitions of the used H&N model in this section are shown in Table A1.

Table A1: Parameters and material properties of the H&N tumor model.
Model Parameter Symbol H&N Tumor

Number of vertices nv 1158
Number of tetrahedral elements ne 8520
Number of vertices on the outer surface ns 760
Number of triangles on the outer surface nt 1516
Size dimx × dimy × dimz 22 mm × 39 mm × 70 mm
Fixed node indices (indexed from 1) V f ix [761, 1000, 1158]
Fiducial marker indices (indexed from 1) VFM [97, 753, 1145, 5, 432]
Young’s modulus E 21 kPa
Poisson’s ratio υ 0.45

With regard to the nonlinearity of FEM solver, we include the following nonlinearities in the process
of dataset generation:

Material nonlinearity. We model the soft tissue as a neo-Hookean solid. Assuming the tissue is
homogeneous, continuous and isotropic, the material constants can be computed based on its Young’s
modulus and Poisson’s ratio following the strategy introduced in [25].

Geometric nonlinearity. By discretizing the simulation process, the force is divided into load
increments which are gradually applied to the tumor. The transformation matrix and stiffness matrix
must be recomputed at each simulation step to account for incremental changes in the geometry of
the tumor.
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Nonlinear element formulation. Each tetrahedral element has 10 nodes (4 of them at the element’s
corners, 6 of them at the middle points of the element’ edges), each of which possesses 6 degrees of
freedom (DOFs); a quadratic displacement function is defined for each tetrahedral element.

A3 Force field interpolation and test dataset generation

The deformation reconstruction performance is firstly demonstrated with Gtest1, which is a sub-dataset
generated when creating Gtrain. To further validate that the pre-trained ANN can predict the weights
vector with a high quality on samples with different boundary conditions, we establish another test
dataset Gtest2, which is created based on a completely different force field settings. The pipeline to
generate the force fields of Gtest2 is as follows:

1. Randomly pick three nodes on the outer surface and assign a random concentrated force to
each node. The scalar α, which is used to control the magnitude of fLBO, is applied here to
control the value of each concentrated force;

2. Employ local Laplacian smoothing to each concentrated force to create a smoothed concen-
trated force field fLS C ∈ R

3ns×1. In this paper, we specify the smoothing rate γ = 0.1 and
iteratively smooth in a total of 20 iterations. The effect of local force smoothing is shown in
Figure A2(a);

3. Generate another LBO-reconstructed force field f ′LBO ∈ R
3ns×1 (different from fLBO in

Section 2.1) following the same strategy introduced in Section 2.1;

4. Generate a new force field finterp ∈ R
3ns×1 by linear interpolating between f ′LBO and fLS C

with an interpolation coefficient β. In this paper, 11 different βs are generated within the
range of [0, 1] with an identical step size of 0.1. The results of force field interpolation is
depicted in Figure A2(b).

Figure A2: Visualization of the generating process of fLS C and finterp as well as some intermediate
force fields on the H&N tumor. Row (a) depicts the process of Laplacian smoothing on three
concentrated forces (in the figure, the initial magnitude of three forces: [ fx, fy, fz] = [5.0, 5.0, 5.0] N),
and fLS C is eventually obtained after 20 iterations of smoothing with γ = 0.1. Row (b) shows linear
interpolation results finterp, which are used to construct Gtest2, with different βs between fLS C (β = 0)
and f ′LBO (β = 1).

A4 Additional results of deformation reconstruction performance

We provide more reconstruction results as well as some performance evaluation plots of our proposed
approach here in addition to the representation in Section 3.1. Figure A3 shows the result of 12
samples constructed with different βs. From Figure A3(a), we can clearly observe that the majority
of nodal mismatch results for each sample are under 1 mm (corresponding to an error percentage
of less than 1.5% compared to the tumor’s maximum dimension of 70 mm), demonstrating that
the reconstruction performance of trained ANN with respect to different force field constructing
parameters remains extraordinarily stable and outstanding. From the visualized results in Figure
A3(b), we can conclude that the predicted shapes generated from our proposed approach are very
close to the benchmark deformed configurations.
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Figure A3: Reconstruction results of twelve samples with different force field interpolation coeffi-
cients (βs). (a) shows the nodal offsets distribution of each sample, the average nodal mismatch of
which appears to be less than 1 mm. (b) visualizes the matching between the benchmark deformed
configurations (in blue) and reconstructed configurations of our proposed approach (in green).

Table A2: Reconstruction performance of the proposed approach with respect to β.
β Average of Offsetmax (mm) Average of Offsetmean (mm)

0 1.181 0.452
0.1 1.085 0.415
0.2 1.016 0.383
0.3 0.941 0.370
0.4 0.932 0.366
0.5 0.889 0.350
0.6 0.903 0.356
0.7 0.971 0.378
0.8 0.951 0.379
0.9 1.089 0.413
1 1.167 0.453

Table A2 summarizes results of the reconstruction performance of sample groups with respect to
different βs. For each group, the result is represented in the average of Offsetmean as well as the
average of Offsetmax of all samples. Results further validate the point that ANN trained on LBO-
reconstructed dataset can perform very well on external unseen dataset with completely different
force field modes. The relative lowest reconstruction error appears at β = 0.5, the corresponding
finterp at which has the minimal magnitude of force field and therefore the minimal magnitude of
deformation. It is apparent that the smaller the deformation magnitude is, the better the reconstruction
performance the ANN can achieve.

A5 Additional results of parametric studies

The number of principal components nw is selected as the minimum number of principal components
required for the maximum nodal displacement error to be less than 1 mm when using PCA reconstruc-
tion. Figure A4 shows this error versus the number of PCs used in reconstruction. The displacement
error is the average maximum error for 5-fold cross validation across the entire data set.

The parametric study regarding nd is conducted on Gtest1. Table A3 shows the parameterization
results with respect to different nds ranging from 3 to 20. The results are reported in the average of
Offsetmean and the average of Offsetmax of all testing samples.

Results of the aforementioned parametric studies show that with a few number of FMs and PCs, the
pre-trained ANN can reconstruct the deformed configuration with a very high euclidean accuracy.
With less number of FMs, it can be practically more convenient to track the displacements of a few
points inside a soft tissue; with less number of PCs, the ANN enables a higher quality nonlinear
mapping between the FM displacements and the weight vectors, which facilitates the learning process
and benefits the speed and accuracy of deformation reconstruction.
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Figure A4: Maximum nodal displacement error across entire data set for varying number of principal
components used during reconstruction.

Table A3: Parameterization results w.r.t. nd.
nd Average of Offsetmax (mm) Average of Offsetmean (mm)

3 2.205 0.634
4 1.587 0.593
5 0.837 0.287
6 0.729 0.241
7 0.675 0.228
8 0.641 0.217
9 0.590 0.203

10 0.485 0.176
11 0.452 0.167
12 0.458 0.168
13 0.412 0.159
14 0.440 0.162
15 0.392 0.148
16 0.386 0.144
17 0.402 0.153
18 0.352 0.136
19 0.365 0.141
20 0.302 0.113
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