
An adversarially robust approach to
security-constrained optimal power flow

Neeraj Vijay Bedmutha
Carnegie Mellon University
nbedmuth@andrew.cmu.edu

Priya L. Donti
Carnegie Mellon University

pdonti@cs.cmu.edu

J. Zico Kolter
Carnegie Mellon University

Bosch Center for AI
zkolter@cs.cmu.edu

Abstract

Security-constrained optimal power flow (SCOPF) is a critical problem for the
operation of power systems, aiming to schedule power generation in a way that is
robust to potential equipment failures. However, many SCOPF approaches require
constructing large optimization problems that explicitly account for each of these
potential system failures, thus suffering from computational complexity issues that
limit their use in practice. In this paper, we propose an approach to solving SCOPF
inspired by adversarially robust training in neural networks. In particular, we frame
SCOPF as a bi-level optimization problem – viewing power generation settings as
parameters associated with a neural network defender, and equipment failures as
(adversarial) attacks – and solve this problem via gradient-based techniques. We
describe the results of initial experiments on a 30-bus test system.

1 Introduction

One of the most crucial problems in power systems engineering involves figuring out ways to schedule
electricity generation in an efficient and robust manner. Specifically, power system operators must
determine the amount of power each generator on the grid should produce in order to minimize
power generation costs, satisfy the physical constraints on the power grid, and ensure robustness to
any potential outages of power system equipment (such as power generators or lines). A common
approach in this area of security-constrained optimal power flow (SCOPF) involves trying to explicitly
solve a large optimization problem that enumerates all possible equipment failures (or contingencies),
as well as accounting for power generation costs. However, these optimization problems tend to be
large, requiring massive computing hardware to solve. As a result, power system operators tend to use
cheap, inaccurate proxies to this problem instead, leading to large system inefficiencies in practice.

In this paper, we attempt to address this problem via an approach based on adversarial robustness in
neural networks. Our approach involves viewing power system failures or contingencies as norm-
bounded adversarial attacks, and attempts to “defend” against these attacks by adjusting the amount
of power generation at each generator. In particular, for any given setting of power generation, we
employ gradient-based techniques to find the “worst-case” failure for that setting. We then adjust
our power generation setting by taking a gradient step in a direction that increases robustness with
respect to this worst-case failure. By doing so, our method can efficiently learn to be robust to all
potential attacks, without ever having to explicitly enumerate them.

We describe our approach in the context of N − 1 SCOPF, a common setting that assumes at most
one contingency at a time will occur on the power grid. (While our framework is also applicable to
more general settings, we begin with this setting as an initial demonstration.) We describe the results
of our initial SCOPF experiments on a 30-bus test case.

Workshop on Machine Learning for Engineering Modeling, Simulation, and Design @ NeurIPS 2020

2 Related work

Our work addresses the problem of SCOPF using concepts from adversarial robustness and implicit
layers in neural networks. We briefly describe these areas and their relation to the present work.

SCOPF. In power systems analysis, it is extremely important to obtain fast solvers for power system
optimization problems and have the ability to simulate the most important contingencies [1]. However,
the general SCOPF problem can be extremely computationally intensive for large systems or grid
networks consisting of several thousand buses [2]. Approaches to reduce the size of the problem
rely on reducing the number of contingencies to be included in the SCOPF analysis; for instance,
[2] discusses simplified methods such as Bender’s Decomposition Method and Linearization of Post
Contingency Constraints, which can lead to a sub-optimal analysis of the violations and typically
may need re-solving. Other approaches have tried to speed up SCOPF not by reducing the number of
contingencies analyzed, but instead by using deep neural networks, e.g., by training a load-generation
mapping and then predicting the generation for the system in question using load inputs [3]. However,
such methods often rely on a large amount of existing load and generation data, and may have trouble
generalizing to out-of-distribution samples. Our method draws inspiration from deep neural network
approaches, but incorporates system knowledge (e.g., the power flow equations and knowledge of the
full space of contingencies) to approach the problem of SCOPF.

Adversarial robustness. The area of adversarial robustness in deep learning attempts to address the
vulnerability of neural networks to attacks. In particular, adversarially robust training approaches pick
neural network parameters using a bi-level optimization approach, in which an inner maximization
problem characterizes the worst case attack on a neural network with particular parameters, and an
outer minimization problem then attempts to pick parameters that are robust to this attack [4]. In
this work, we draw inspiration from the adversarial robustness literature by viewing power system
setpoints as akin to neural network parameters, and power system failures as akin to neural network
attacks. In particular, we frame SCOPF as a bilevel optimization problem, and solve it (as in the
literature on adversarial robustness) using gradient-based techniques.

Implicit layers. There has recently been a growing interest in the creation of neural network
layers that characterize implicit functions of their inputs and outputs. Examples include quadratic
programming layers [5], layers characterizing ordinary differential equations [6], and power system
optimization layers [7], among many others [8–17]. Our approach makes use of concepts from this
literature, in particular when embedding the calculation of power flow solutions into neural networks.
In particular, while power flow solutions can be calculated explicitly for certain classes of power
system approximations, in the more general case, calculating power flow solutions involves employing
implicit solution techniques (such as Newton-Raphson). While we use the DC approximation of
power flow here (which is amenable to explicit solutions), in future work, we propose to study more
general settings, and employ implicit power flow layers [7] in the loop of our proposed method.

3 Background: SC DCOPF

Optimal power flow problems are solved by power system operators in order to determine set points
for electricity generators that minimize the cost of supplying power. In particular, the problem of AC
optimal power flow (ACOPF) attempts to set the power generation and voltage for each generator to
minimize costs subject to equipment limits and a set of (nonlinear, non-convex) power flow equations.
As ACOPF is non-convex and expensive to solve, it is common to instead use an approximation
called DC optimal power flow (DCOPF) that can be used for fast assessment of power systems.

At a high level, for a system with n buses (i.e., nodes), ng generators, and some cost function
fc : Rng → R, DCOPF tries to determine the power generation Pg ∈ Rng at each generator by
solving the problem

minimize
Pg∈Rng

fc(Pg) (1)

subject to Pmin ≤ Pg ≤ Pmax (2)

P̃g − Pd = B × θ (3)

− (Lmax)ij ≤
1

xij
(θi − θj) ≤ (Lmax)ij ∀ lines (i, j), (4)

2

where Pd ∈ Rn describes the electricity demand at each bus, P̃g ∈ Rn is a vector that is 0 at
non-generator buses and equals the total power generation at that bus (based on Pg) at generator
buses, θ ∈ Rn is a vector of nodal phase angles, xij is the susceptance of line (i, j), B ∈ Rn×n is
the nodal susceptance matrix, and Pmin, Pmax, Lmax describe generator and line equipment limits.

In this paper, we specifically address the problem of DCOPF with security constraints (SC DCOPF).
Security constrained DCOPF aims to both (a) reduce the total cost of generator power output, as
in DCOPF, and (b) handle potential system failures (e.g., generator or line breakdowns). Here, we
specifically consider the common case of “N − 1 security constrained DCOPF,” i.e., optimal power
flow analysis that can account for the failure of any one system generator or line at a time. In other
words, the goal of N − 1 SC DCOPF is to obtain a power flow solution that continues to respect the
equipment limits of power generators and lines, as well as the DC power flow equations, in the case
that any one piece of system equipment should fail.

4 Adversarially robust SCOPF

In this paper, we view SC DCOPF through the lens of adversarial robustness in deep learning.
Specifically, SC DCOPF can be written as the bi-level optimization problem

minimize
Pg∈Rng

maximize
α∈Rnc

`(Pg, α) + `(Pg, 0), (5)

where `(·, ·) is some loss function capturing both power costs and the feasibility of the solution, and
α ∈ Rnc is a vector of contingencies. (We will describe the details of both of these aspects shortly.)
This bi-level optimization formulation captures the fact that we would like our power generation
setpoint Pg to be robust both in the case where there are no contingencies, and in the case where we
experience a worst-case contingency/failure that maximizes the inner maximization problem. In the
parlance of adversarially robust neural networks, we view Pg as the parameters of the defender, and
α as the actions of an adversarial attacker.

Following the literature in adversarially robust training in neural networks, our approach is to then
optimize this problem via gradient-based techniques. At a high-level, this approach is as follows:

• Initialize some Pg = P init
g .

• Until convergence
– Solve the inner maximization problem to find an argmax α? (i.e., the worst-case

failure) for the current setting of Pg. (This can be done either in closed-form or via
gradient-based techniques.)

– Calculate the loss `(Pg, α?) + `(Pg, 0).
– Update Pg = Pg − β∇Pg (`(Pg, α

?) + `(Pg, 0)), for some learning rate β.

We dive into the details of the algorithm and lay out various intricacies specific to this method.

4.1 Defining contingencies and outages

We start by defining the attack space (contingency space) used in our setting. In standard SC DCOPF
analysis, equipment failure is viewed as a discrete event, i.e., a piece of equipment either fails or
does not fail. In order to optimize Equation (5) via gradient-based techniques, however, we instead
define a continuous contingency space over which to optimize α. Specifically, we define A ⊆ Rnc as
a relaxed contingency space, where for any vector of nc contingencies α ∈ A,

αi =

0 iff contingency i is not active,
1 iff contingency i is fully active,
f ∈ (0, 1) iff contingency i is partially active (see description below).

(6)

The first two notions presented in Equation (6) as to whether a contingency is active or not are as
standard in power systems: the generator/branch described by contingency i functions as normal if
the contingency is not active, and suffers a complete outage if the contingency is fully active. We
newly define the notion of a fractional contingency as one in which a generator or branch may suffer
a partial outage. Specifically, a contingency of strength f ∈ (0, 1) denotes a reduction in the capacity
of the relevant component by a fraction (1− f).

3

Since α is a vector of contingencies over both the generators and the lines, for notational convenience,
we define it as

α =

[
Φ
Ψ

]
, (7)

where Φ is the vector of generator contingencies and Ψ is the vector of line contingencies.

In this setting, we further distinguish between the notion of a contingency and an outage. In particular,
we qualify any contingency αi as an outage if and only if it reduces the capacity of a generator or
line below the amount of existing power generation or line flow, respectively, associated with that
line – in other words, if the contingency makes the operation of that component infeasible. We define
a power system component as being in an infeasible region if it experiences an outage. (In contrast,
we say a component is in the feasible region if the contingency on it does not translate to an outage.)
We now describe our model for outages in more detail.

4.1.1 Generator Outage

In the presence of contingencies, the system might incur generator outages. As discussed before,
outages occur when a contingency reduces the capacity of a generator below its current power
generation. We consider the setting of automatic generation control (AGC), where working power
generators adjust their power generation to compensate for power outages on the grid.

Specifically, for some set of outages, we note that the total reduction in generation after outages on
some generators must be met by all of the other (non-outage) generators. In other words, if nout
generators undergo an outage, then we let

Poutage =

nout∑
o=1

(∆Po), (8)

where ∆Po is the power outage for a particular generator and Poutage is the total lost power gener-
ation due to the partial power outage contingencies in generators. In particular, for a generator o
experiencing an outage, we refer to its original generation as (Pg)o and the generator capacity as
(Pmax)o . Then, in case of a contingency Φo on this generator, the change in power for this generator
is given by:

∆Po = −max
(
(Pg)o − (Pmax)o × (1− Φo), 0

)
. (9)

The pickup ∆Pw by any working generator w of the remaining ng - nout working generators is given
to us by a participation factor PFw. Specifically, for a working generator w, we let

∆Pw = Poutage × PFw, where PFw =
(Pmax)w∑
w(Pmax)w

. (10)

This formulation ensures that all of the power lost (Poutage) is picked up by the ng − nout working
generators put together. The new power output at each generator j is then given by (Pg)j + ∆Pj ,
where ∆Pj is given by Equation (9) for outage generators, and by Equation (10) for working
generators. In vectorized form, we will refer to the adjusted power generations at each generator by
Pg + ∆P .

4.1.2 Line Outage

The next step in the algorithm is to evaluate potential line violations. The new power generations
Pg + ∆P are used in a DC power flow (which solves the power flow equations (3)) to solve for the
power flows along each line. Let L denote this set of line flows. We note that the line flows may very
well be infeasible depending on the line contingencies Ψ, as reflected in our loss function.

4.2 Loss Function

The loss function in the bi-level optimization problem (5) is formulated to (a) evaluate the power
generation costs of the power system, (b) penalize outages or infeasibilities, At a high level, the loss
function can be expressed in terms of its components as:

`(Pg, α) = fc(Pg, α) + finfeas(Pg, α), (11)

4

where again Pg is the vector of current power generation, α is the contingency vector, fc(Pg, α) is a
function representing the power generation costs, and finfeas(Pg, α) represents infeasibilities in power
generation or line flows.

More specifically, we define finfeas so as to represent both (a) true infeasibilities (i.e., when generator
power outputs or line flows go beyond their respective generation or line flow limits), and (b)
how close a particular generator or line is to its limit in the case that it is feasible. In particular,
incorporating the latter enables us to design a continuous loss function that is amenable to gradient
descent-based techniques, as follows:

finfeas(Pg, α) =

(
(Pg + ∆P)− Pmin + Pmax ◦ (1− Φ)

2

)2

+

(
|L| − Lmax ◦ (1−Ψ)

2

)2

. (12)

We note that this loss function includes L, which is the solution to power flow on the adjusted
power generation values Pg + ∆P . In the case of DC power flow, this simply entails solving a set
of linear equations, and therefore is easy to differentiate through. In the case of AC power flow,
which is required for SC ACOPF (which we are exploring in concurrent work), the power flow
equations are nonlinear and non-convex, and therefore must be solved via implicit methods such as
Newton’s method. In this case, differentiating through these equations requires implicit differentiation
techniques, e.g., as described in [7].

5 Preliminary results

We train the proposed adversarial neural network on a 30-bus test case file for 200 “defense epochs”
(i.e., 200 iterations of the outer minimization in Equation (5)) to obtain the preliminary results. The
expected goal is to reduce the loss (i.e., power costs and infeasibilities) over time by adjusting the
control variable Pg in every outer iteration, after having found the worst-case vector of contingencies
α via the inner maximization. Figure 1 represents the plotted results describing (a) the power costs
fc, (b) the penalty contributions finfeas of generator and line infeasibilities, and (c) sum of these two
components over training epochs.

Figure 1a shows the total loss over epochs, which (as expected) our algorithm reduces. Decomposing
this into its components, Figure 1b depicts the power generation cost for the 30 bus test case system,
whereas Figure 1c shows the infeasibility contributions to the loss function. The results from these
plots show that the power generation costs increase over the epochs, whereas infeasibilities go down.
In particular, these results demonstrate that there is a trade-off between power costs and the robustness
of the obtained solutions.

6 Conclusion

In this work, we propose a framework for SCOPF based on adversarially robust training in neural
networks. We investigate this approach in an N − 1 SC DCOPF setting, via experiments on a 30-bus
test case. Future work includes further tests in DC settings, as well as extending our approach to the
SC ACOPF setting (which will involve drawing on the literature in implicit differentiation in neural
networks).

5

(a) Total loss vs. defense epochs (b) Cost of power generation vs. defense epochs

(c) Infeasibility loss vs. defense epochs

Figure 1: Preliminary results for the 30-bus test case. We observe that the infeasibility losses decrease
as we train the network, whereas power generation costs rise. Basically, we are trading off some
sense between “optimality” in the power costs and a sense of robustness to attacks.

References
[1] V. H. Hinojosa and F. Gonzalez-Longatt, “Preventive security-constrained dcopf formulation

using power transmission distribution factors and line outage distribution factors,” Energies,
vol. 11, no. 6, p. 1497, 2018.

[2] F. Capitanescu, J. M. Ramos, P. Panciatici, D. Kirschen, A. M. Marcolini, L. Platbrood, and
L. Wehenkel, “State-of-the-art, challenges, and future trends in security constrained optimal
power flow,” Electric Power Systems Research, vol. 81, no. 8, pp. 1731–1741, 2011.

[3] X. Pan, T. Zhao, and M. Chen, “Deepopf: A deep neural network approach for security-
constrained dc optimal power flow,” arXiv preprint arXiv:1910.14448, 2019.

[4] Z. Kolter and A. Madry, “Tutorial: Adversarial robustness - theory and practice.”

[5] B. Amos and J. Z. Kolter, “OptNet: Differentiable Optimization as a Layer in Neural Networks,”
in Proceedings of the 34th International Conference on Machine Learning-Volume 70, pp. 136–
145, JMLR. org, 2017.

[6] R. T. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud, “Neural ordinary differential
equations,” in Advances in Neural Information Processing Systems (NeurIPS), 2018.

[7] P. L. Donti, I. L. Azevedo, and J. Z. Kolter, “Inverse optimal power flow: Assessing the
vulnerability of power grid data,”

[8] A. Agrawal, B. Amos, S. Barratt, S. Boyd, S. Diamond, and J. Z. Kolter, “Differentiable convex
optimization layers,” in Advances in Neural Information Processing Systems (NeurIPS), 2019.

[9] S. Gould, R. Hartley, and D. Campbell, “Deep declarative networks: A new hope,” Preprint
arXiv:1909.04866, 2019.

6

[10] P. L. Donti, B. Amos, and J. Z. Kolter, “Task-based end-to-end model learning in stochastic
optimization,” Preprint arXiv:1703.04529, 2017.

[11] J. Djolonga and A. Krause, “Differentiable learning of submodular models,” in Advances in
Neural Information Processing Systems (NeurIPS), 2017.

[12] S. Tschiatschek, A. Sahin, and A. Krause, “Differentiable submodular maximization,” Preprint
arXiv:1803.01785, 2018.

[13] B. Wilder, B. Dilkina, and M. Tambe, “Melding the data-decisions pipeline: Decision-focused
learning for combinatorial optimization,” in AAAI Conference on Artificial Intelligence, 2018.

[14] P.-W. Wang, P. L. Donti, B. Wilder, and Z. Kolter, “SATNet: Bridging deep learning and logical
reasoning using a differentiable satisfiability solver,” in International Conference on Machine
Learning (ICML), 2019.

[15] C. K. Ling, F. Fang, and J. Z. Kolter, “What game are we playing? End-to-end learning in
normal and extensive form games,” Preprint arXiv:1805.02777, 2018.

[16] F. de Avila Belbute-Peres, K. Smith, K. Allen, J. Tenenbaum, and J. Z. Kolter, “End-to-end
differentiable physics for learning and control,” in Advances in Neural Information Processing
Systems (NeurIPS), 2018.

[17] S. Bai, J. Z. Kolter, and V. Koltun, “Deep equilibrium models,” in Advances in Neural Informa-
tion Processing Systems (NeurIPS), 2019.

7

	Introduction
	Related work
	Background: SC DCOPF
	Adversarially robust SCOPF
	Defining contingencies and outages
	Generator Outage
	Line Outage

	Loss Function

	Preliminary results
	Conclusion

