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Abstract

The growing deployability of artificial intelligence (AI), accessibility to large
amounts of data and new computing technologies are causing a disruption in
the manufacturing industry. Manufacturers are turning to technologies like AI,
robotics, and the Internet of Things (IoT) to convert their production plants into
more efficient smart factories. Many large-sized manufacturers have already
deployed some of these technologies in their factories, with small-sized and
medium-sized industries quickly catching up. As the manufacturing industry
embraces AI, demand among engineering professionals for user-friendly tools that
can deploy complex machine learning models with relative ease has been growing
over the years. In particular, deep learning tools need a considerable amount of
programming knowledge and, thus, remain obscure to engineers inexperienced
with programming. To overcome these barriers, we propose ManufacturingNet,
an open-source machine learning tool that enables engineers to develop complex
machine learning models with minimal programming and data science experience.
We have also curated nine publicly-available datasets and benchmarked their
performance using ManufacturingNet‘s machine learning models. For each
dataset, pre-trained models yielding optimal results are also included. We believe
ManufacturingNet will enable engineers around the world to develop machine
learning models with ease, contributing towards the larger movement of the 4th
industrial revolution.
The GitHub repository for ManufacturingNet can be found at
https://github.com/BaratiLab/ManufacturingNet.

1 Introduction

The 4th industrial revolution has led to manufacturers embracing technological advancements in
the areas of robotics, AI, nanotechnology, the Internet of Things (IoT), the Industrial Internet of
Things (IIoT). These digital technologies are not only improving efficiency in manufacturing, but
also providing manufacturers an edge to keep up with the rapidly changing world driven by customer
demands. Companies across the globe are using AI to improve their supply chains and increase
automation level. This global push for improved efficiency and automation by manufacturing plants
across the world has led to an increased presence of advanced sensor technologies that are capable
of capturing real-time data, which can be effectively used to analyze and optimize processes[1].
To analyze this vast amount of data being collected, cost-effective smart technologies like AI are
being used by manufacturers regularly. This use of smart technologies has contributed significantly
towards process improvements, preventive maintenance, and quality control in many industries[2].
Moreover, smart technologies can also lead to improvements in energy management, automation of
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complex processes, and help organizations make data-driven decisions. With the increased availability
of data and impetus from the industry for data-driven research, researchers are increasingly using
advanced machine learning techniques to address the complex problems faced by manufacturers
across the globe. One such example where machine learning is actively used is the semiconductor
manufacturing industry. A common problem faced by semiconductor manufacturers is the inability
to detect faulty wafers. This inability to detect faulty wafers can lead to lowered process yield and
increased downtime in manufacturing. In their paper, Kim et al., showed that machine learning
techniques can act as a promising tool for wafer fault detection [3]. Another area where researchers
have applied machine learning to manufacturing data is for predicting tool wear and potential failure
during the machining process[2]. Problems such as reducing energy costs with lowered consumption,
quality control by predicting surface roughness, deformation, and cutting force also have been
addressed using different machine learning methods by researchers [4],[5]. With this growing trend
in usage of machine learning in the manufacturing industry, there is a growing need for engineers
in manufacturing plants to use available data and generate valuable insights that can have broader
impact on their organizations’ profits. However, with their expertise lying in production processes,
engineers working at these manufacturing facilities find it difficult to develop complex machine
learning models, limiting their ability to analyze their own datasets. To tap into manufacturing data
and provide an accessible tool for engineers, we have developed ManufacturingNet, an open-source
package. ManufacturingNet can be used to analyze different types of problems with very little coding
expertise required. We also provide the benchmark performance for nine different datasets that can be
subdivided into five broad categories in manufacturing, along with their pre-trained models that can be
used by engineers directly on similar datasets. We believe that such a tool is of utmost importance for
engineers, and will contribute significantly towards the data-driven research of manufacturers across
the globe. We also would like to acknowledge that our package is built on top of other packages like
NumPy[6], Scipy[7], Matplotlib[8], PyTorch[9], Pillow[10] and Scikit-Learn[11]

Figure 1: An overview of the ManufacturingNet project.

2 Methods

In this work, we introduce the open-source package ManufacturingNet. Our package provides
the functionality to run complex machine learning models, enabling users with varying degrees
of expertise to develop these models with greater ease. The deep learning frameworks available
in the package include Multi-Layered Perceptron (MLP), Convolutional Neural Network (CNN),
Long Short-Term Memory network (LSTM). To provide functionality for video-based data, we
have also included CNN3D and CNN-LSTM models. We also offer users conventional machine
learning models such as Random Forest[12], Support Vector Machines (SVM)[13], XGBoost[14],
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logistic regression, and linear regression. We would like to highlight ManufacturingNet’s ability
to run all supported classification/regression models simultaneously. This functionality will allow
users to compare the performance of all algorithms and select the best one for their task. Figure 1
demonstrates the broad layout of the ManufacturingNet package. Aside from its functionality of
running complex models, ManufacturingNet also has benchmark models for nine publicly-available
datasets. These datasets and their corresponding best-performing models can be easily downloaded
using the package. In general, the user has to answer a few simple questions in regard to the model
they want to develop, and our package creates a model based on their inputs. To further assist the user,
we have also written documentation to explain the parameters of each model. This documentation
is available at https://manufacturingnet.readthedocs.io. Moreover, we also provide tutorials in our
GitHub repository that demonstrate how these models can be run.

2.1 Datasets

One of the core goals of ManufacturingNet is to aggregate multiple public datasets from different
realms of industrial manufacturing and provide high-performance benchmark models. Manufactur-
ingNet has nine datasets subdivided into five broad categories, namely casting, signal processing,
additive manufacturing, test bench and machining. The evaluation metrics provided when developing
models for that data are summarized in Table 3 and our benchmark results have been discussed in later
sections. We also plan to incorporate more datasets as the project progresses, and welcome public
contributions from users working in this research area. More details about the different data structure
requirements and the types of models suitable for the datasets are available in the ManufacturingNet
documentation.

Figure 2: Datasets available in ManufacturingNet.

2.1.1 List of available datasets

1. CWRU bearing dataset[15]

2. Paderborn bearing dataset[16]

3. Two photon lithography dataset[17]

4. Mercedes Benz greener manufacturing dataset[18]

5. Casting images dataset[19]

6. 3D prnting dataset[20]

7. Paderborn university motor temperature dataset[21]

8. Gearbox binary classification dataset[22]

9. Chatter detection dataset[23][24]
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2.2 Models

ManufacturingNet provides implementations of several machine learning models that can be applied
to different types of problems and datasets. The included models are broadly classified into two
categories: conventional machine learning methods and deep learning methods. For conventional
machine learning, algorithms like linear regression, logistic regression, SVM, Random Forest and
XGBoost are implemented. For deep learning, fully-connected neural networks (or Multi-Layer
Perceptron), Convolutional Neural Networks (CNN), Convolutional Neural Networks for video
classification (CNN-3D)[25] and CNN-LSTM have been implemented. We also implement Long
Short-Term Memory Networks (LSTM)[26] for time series data related predictions.

2.2.1 Pre-trained models

ManufacturingNet also offers some of the well established neural network architectures with proven
track records. Currently, there are six architectures included in the package: ResNet[27], AlexNet[28],
VGG[29], DenseNet[30], MobileNet[31], and GoogleNet[32] . Users may choose to use the pre-
trained weights of these models. These models are trained on ImageNet datasets[33], and can be
used for different types of tasks such as classification, object detection, and video classification,
among others. Since users’ datasets may contain different numbers of input channels and classes
(for classification tasks), ManufacturingNet iterates these layers in the network of the selected
model. ResNet, VGG, and DenseNet models further contain different types of sub-architectures
depending upon the number of layers in the model. For example, ResNet contains 18, 34, 51, and 101
architectures; ResNet18 here is an 18-layer deep network. Depending on the complexity of the task
and available RAM, users can select models with the desired depth of the network. The commands
for running ManufacturingNet’s models are shown in Table 1.

Table 1: Running the models

Model Command

Linear Regression ManufacturingNet.models.LinRegression
Logistic Regression ManufacturingNet.models.LogRegression
SVM ManufacturingNet.models.SVM
Random Forest ManufacturingNet.models.RandomForest
All Classification models ManufacturingNet.models.AllClassificationModels
All Regression models ManufacturingNet.models.AllRegressionModels
Deep neural network ManufacturingNet.models.DNN
CNN2D on Signals ManufacturingNet.models.CNN2DSignal
CNN2D on Images ManufacturingNet.models.CNN2DImage
CNN3D ManufacturingNet.models.CNN3D
CNN LSTM ManufacturingNet.models.CNNLSTM
LSTM ManufacturingNet.models.LSTM
AlexNet ManufacturingNet.models.AlexNet
VGG Models ManufacturingNet.models.VGG
ResNet Models ManufacturingNet.models.ResNet
DenseNet Models ManufacturingNet.models.DenseNet
GoogleNet ManufacturingNet.models.GoogleNet
MobileNet ManufacturingNet.models.MobileNet

2.3 Demonstration: Running models with ManufacturingNet

ManufacturingNet provides a consistent experience for using conventional machine learning, deep
learning, and pre-trained models. Regardless of the model, users follow the same basic process of
importing required ManufacturingNet modules, preparing their data, and training the model. Within
a Python 3 environment,

• Import the desired model from the ManufacturingNet library. All models are contained in
the "models" sub-directory.

– Users may also wish to import other modules to assist with data preparation. For
example, in Figures 3 and 4, the NumPy library is used to load the data for training.
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• Prepare the data.

– Most model implementations expect the data’s features and labels to be entered as
separate NumPy arrays. Notable exceptions are models expecting non-ASCII data,
such as image classification models like CNN2D. In these cases, the model requires
strings of the file paths to the training and testing sets.

– Note: ManufacturingNet’s datasets module provides functions for downloading and
extracting each dataset. Datasets containing ASCII data are provided in a format
readable by the NumPy library’s load() function.

• Instantiate and train the model.

– Each model provides an initialization method requiring two parameters: the dataset’s
features and labels.

– Because many of ManufacturingNet’s conventional machine learning model implemen-
tations support both classification and regression tasks, some models require the user to
call the run_classifier() or run_regressor() method after initialization to specify the task.
Conventional models which support only one task (such as linear regression) simply
require the user to call the run() method.

• Specify the parameters.

– ManufacturingNet’s command-line interface simplifies parameter entry, and offers
default values when the user is unsure.

– Once the model finishes training, relevant metrics are displayed via the interface.

• (Optional) Run the model on new data.

– ManufacturingNet’s model implementations offer methods for classifying or making
predictions on new data using the trained model.

To learn more, users may view model tutorials provided in the repository, or read the documentation
on ManufacturingNet’s website.

Figure 3: Running all machine learning regression models with ManufacturingNet.
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Figure 4: Training a DNN model with ManufacturingNet, and viewing its accuracy graph.

Figure 5: Training an AlexNet image classification model with ManufacturingNet.

2.4 Featurization and Preprocessing modules

Feature engineering is an essential step in developing any machine learning model. If a feature
from the dataset selected by the user can represent the relationship between the data and the target
prediction, it is expected that the performance of the machine learning algorithm will be higher.
One of the commonly available signals data to the manufacturing community is vibration signals.
Therefore, users need a comprehensive list of signal features to select and deploy machine learning
models from. In ManufacturingNet, we provide the user with 20 signal features, including RMS value,
mean, median, shape factor, and crest factor. These signal features were chosen by studying important
literature in this area. The commands in ManufacturingNet to implement different featurization
techniques are demonstrated in Table 2.

First, the user needs to initialize the featurizer object using the below command:
Featurizer = ManufacturingNet.featurization.Featurizer

Suppose F = Featurizer()
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Table 2: Featurization using ManufacturingNet

Featurization Command

Mean F.mean()
Median F.median()
Min F.min()
Max F.max()
Peak to Peak F.peak_to_peak()
Variance F.variance()
RMS F.rms()
Absolute mean F.abs_mean()
Shape Factor F.shapefactor()
Impulse Factor F.impulsefactor()
Crest Factor F.crestfactor()
Clearance Factor F.clearancefactor()
Standard Deviation F.std()
Skewness F.skew()
Kurtosis F.kurtosis()
Absolute log mean F.abslogmean()
Mean absolute deviation F.meanabsdev()
Median absolute deviation F.medianabsdev()
Mid-range F.midrange()
Coefficient of Variation F.coeff_var()

3 Results

The performance benchmarks of ManufacturingNet’s nine publicly-available datasets are provided in
Table 3. The features provided in ManufacturingNet allow us to deal with many different types of
data, including vibration signals, images, and time series data. Depending on the type of data, we
selected relevant features for each model, and used both conventional machine learning algorithms
and deep learning methods to generate predictions. All results reported in this paper are with five-fold
cross validation, and we achieved state-of-the-art results for almost all the datasets.

Table 3: Results on the ManufacturingNet datasets

Dataset Dataset-type Metric-used Task Model Results

CWRU bearing Signal Processing Accuracy Classification CNN 98.5%
Paderborn bearing Signal Processing Accuracy Classification CNN 99.13%
Gearbox binary
classification dataset Signal Processing Accuracy Classification Random Forest 99.50%
Lithography dataset AM Accuracy Classification CNN-LSTM 99%
3D printer dataset AM Accuracy Classification Logistic Reg. 100%
Rotor Temperature Test Bench R2-score Regression LSTM 0.9943
Mercedes-Benz
Green dataset Test Bench R2-score Regression LSTM 0.553
Chatter dataset Machining Accuracy Classification CNN 82.22%
Casting images Casting Accuracy Classification DenseNet 99.28%

Note: "AM" refers to additive manufacturing in Table 3
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