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Abstract

Cities are vulnerable to heat-induced risks due to their dense population and their
characteristically higher temperature (as compared to the surrounding environment).
Therefore, fast/accurate heat risk assessment is desired for mitigation plans and
sustainable community management. This paper introduces a probabilistic model
to forecast the meso-scale surface temperature in an urban area at a relatively
low computational cost, as an alternative to widely-utilized but computationally-
intensive Numerical Weather Prediction (NWP) models. After calibrating the
model with data from two urban areas, we assess the model’s prediction perfor-
mance. During our numerical test, the model’s 3hours-ahead prediction error is
evaluated as 0.99-1.59◦C in root-mean-squared error (RMSE) and 0.94-0.96 in cor-
relation coefficient (r), which is comparatively better performance than a baseline
model. Finally, we integrate the developed model into a probabilistic risk analysis
framework to estimate extreme temperature distribution around these cities. In
doing so, we expand the model’s applicability, providing insights on the future risk
and enabling various other statistical inferences. As a result of risk assessment, a
posterior probability map is provided as the risk of extreme temperature during the
test period, and the occurrence rate of urban heat island is evaluated for both urban
areas.

1 Introduction

Surface temperature has a broad impact on human health and activity, and extreme heatwaves are
one of the deadliest hazards around the globe (Changnon et al. (1996)). Urban areas are particularly
vulnerable to heat stressors because of their high population density. An apparent heat pattern in
an urban area, known as the Urban Heat Island (UHI) effect, is its trapped heat within the building
canopy resulting in higher temperatures than the surrounding environment. The UHI phenomenon
has a non-linear relationship with extreme heatwaves making assessments of heat risks especially
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challenging.
This paper introduces a spatio-temporal surrogate model that predicts surface temperature for the
150km∼200km meso-scale domain (at a 1km resolution). We then suggest using this surrogate
model to quantify the urban heat risk that would not be directly observable from the data. In the
following sections, the term ’surface temperature’ is used to denote ’2m temperature’ – that is, the
temperature at 2m above the ground. That is because 2m temperature influences human comfort and
mortality more than strictly defined ’surface temperature’ (Anderson and Bell (2009) and Voogt and
Oke (2003)).

1.1 Numerical weather prediction

Numerical weather prediction (NWP) is the golden-standard for current weather forecast and research
(Weyn et al. (2019)). NWP is based on numerical models that solve differential equations related
to physical processes in atmospheric science. NWP has improved its accuracy through advances in
computing resources. For example, the Princeton Urban Canopy Model captures the complicated heat
patterns in an urban area, with a bias as small as 0.4∼1.1◦C, by incorporating Weather Research and
Forecasting Model (WRF-PUCM) (Li and Bou-Zeid (2014)). Still, the main challenge of NWP is its
high computational cost, which limits its applicability for heat risk assessments that are time-sensitive.

1.2 Probabilistic approach

Probabilistic approaches, such as the one presented in this paper, aim to characterize the complex
spatio-temporal process with statistical descriptions. For example, Berliner et al. (2000)) proposed
a Bayesian hierarchical model to estimate the monthly sea-surface temperature for the tropical
Pacific region (Berliner et al. (2000) and Cressie and Wikle (2015)). Similarly, Malings et al. (2017)
suggested using a Gaussian process (GP) to approximate the urban surface temperature and used this
model to optimize the sensing locations over a city (Malings et al. (2018)), via a Value-of-Information
analysis. Though related to our objective, these prior efforts have focused primarily on forecasting
temperatures without extending it to risk quantification.

2 Surrogate model

We now provide a more formal description of our probabilistic model.

2.1 State-space representation

State-space representations have been widely adopted to characterize complex physical sys-
tems/processes, and to estimate their dynamical behavior by incorporating observations in a variety
of Kalman Filter/Smoothing schemes (Welch and Bishop (1995)).
In our state-space model, a (high-dimensional) temperature field vector yt (P×1), is decomposed
into three factors: average temperature field µτ , a linear function of the low-dimensional latent states
xt (R×1;R� P ), and an error term vt.

yt = µτ + Φτ xt + vt (1)

where Φτ and µτ are the embedding matrix and the average field, respectively, that are time-
dependent parameters according to the time of the day τ , discretized into 48 steps from 00:00 (i.e.,
midnight) to 23:30. Note that τ is really a function of time t (i.e., τ(t)) but for notational conveniece
we omit this. The temporal evolution for the process is assumed to be Markovian with the linear
transition matrix Fτ that also depends on the time of the day τ .

xt = Ftxt−1 + wt = Fτ xt−1 + wt (2)

where wt the zero-mean Gaussian noise at time t, whose covariance matrix Στ
w is also a function of

τ . Fig 1 summarizes the overall hierarchical structure of the proposed model.

2.2 Latent variable selection

We choose the state variables as the observable temperature at certain locations where most infor-
mation exists to estimate the rest of the field variables. Selecting such locations, denoted as a set A,
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Figure 1: Graphical representation of the proposed model

then becomes an optimal sensor placement problem. We partition the field of residual temperature ỹt
into two sub-vectors yip

t and xt where the vector ỹt is the difference between temperature yt and its
corresponding mean-field µτ .

ỹt = yt − µτ =

yip
t
−
xt

 (3)

To solve the optimal placement problem, we adopt a method proposed in Krause et al. (2008),
maximizing the difference between marginal entropy and conditional entropy of the places where no
sensor is installed.

A∗ = argmaxA⊆S:|A|=R

[
H
(
yip
t

)
−H

(
yip
t |xt

)]
(4)

|A| is the number of sensor placements, which is equal to the dimension of latent variables R. S is a
set of locations where we can place sensors. H(·) is the entropy or conditional entropy. A merit of
this approach is that the latent variables are directly observable from the data.

2.3 Parameter estimation

After selecting the optimal location A∗, the transition matrix is calibrated, adopting the least square
error loss function (LSE) with a regularization term.

L =
∑
τ

 1

2ND

∑
{t|HoD(t)=τ}

‖xt − Fτ xt−1‖2L2

+
1

2
αHM

∑
τ

‖Fτ − FHM‖2 (5)

where HoD(·) returns the hour of the day with the input t, i.e. τ = HoD(t), and ‖ ·‖2 is the Frobenius
norm. FHM is a homogeneous transition matrix that is obtained through a pre-training procedure.

FHM = ΣHM
xtxt−1

[
ΣHM

xtxt
+ ηHMI

]−1
(6)

where ΣHM
xtxt−1

and ΣHM
xtxt

are the covariance matrices that is constructed by using the following
stationary and isotropic kernel functions. ηHM is a hyper-parameter that prevents FHM from being
a typical identity matrix, forcing a geometrically closer predictor to have an larger absolute value,
which is set to be 0.1◦C.

ΣHM
xtxt

(i, j) = σexp
[
−∆i,j

λHM

]
, ΣHM

xtxt−1
= ρΣHM

xtxt
(7)

where ΣHM
∗ (i, j) is the i-th row and j-th column element of the matrix. σ and ρ are scalar values

that represent the homogeneous standard deviation and correlation coefficient, respectively. ∆i,j is
the geometric distance between the sites i and j, and λHM is a parameter that models the decaying
correlation with increasing distance. The pre-training procedure searches the maximum-likelihood
estimators for (7). The regularization coefficient αHM is then selected through n-fold cross-validation.
Such a regularization term is to find a stable transition by forcing the learned matrix to be similar
to the homogeneous matrix. The following loss function provides the estimation for the embedding
matrix Φτ similarly to (5).

LΦ =
∑
τ

 1

2ND

∑
{t|HoD(t)=τ}

‖ỹt −Φτ xt‖2L2

+
1

2
αΦ

∑
τ

‖Φτ − ΦHM‖2 (8)
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Table 1: Summary of training data
Setting New York Pittsburgh

Latitude [40.040, 41.513]◦ N [39.546, 41.325]◦N
Longitude [74.701, 72.741]◦W [81.172, 78.777]◦W

Spatial grid 159×159 201×198
Grid spacing 1km 1km

Calibration years 2016/2017/2018 2016/2017/2018
Start date Jun 1 00:00 UTC Jun 1 00:00 UTC
End date Sep 1 00:00 UTC Sep 1 00:00 UTC

Time interval 30min 30min

The homogeneous embedding matrix ΦHM is defined similarly to the homogeneous transition matrix
FHM sharing the the parameters, λHM, ηHM, and σ.

ΦHM = ΣHM
ỹtxt

[
ΣHM

xtxt

]−1
where ΣHM

ỹtxt
(i, j) = σexp

[
−∆i,j

λHM

]
. (9)

3 Model calibration

To calibrate the model, we reanalyzed historical weather data with the WRF-PUCM by down-scaling
6 hourly 12km×12km data of North American Meso-scale Forecast System 12 km Analysis (NAM-
ANL; NCEP North American Mesoscale (NAM) 12 km Analysis (2015)) to 1km×1km grid data
with 30 minutes intervals. Using the simulated data, we calibrate the proposed model for both
domains around Pittsburgh (200km×200km) and New York City (160km×160km). Hereafter, the
reanalyzed surface temperature by WRF-PUCM is used as a ground truth to the proposed model.
Table 1 summarizes the dataset that were used to calibrate the model.

4 Model validation

We validate the model by assessing the prediction performance with the multiple use cases. The use
cases are listed as the followings:

Case 1: we exploit local temperature measurements at hypothetical weather stations yi(t) with the
small level of error, zero-mean and 0.1◦C standard deviation. The simulated weather stations are
assumed to be evenly distributed with 6km spacing.
Case 2: In addition to Case 1, the average temperature over the entire domain is provided for the test
period (3 days) with 6 hourly intervals (being updated at 00:00, 06:00, 12:00, 18:00).
Case 3: In addition to Case 1, this case provides average temperatures of multiple square-shape zones
(12km ×12km) with 6 hourly intervals for the test period.

Case 2 and 3 describe the use cases when an external NWP provides a coarse resolution solution
as an outcome of the broader scale simulation. We set two baselines using the model proposed by
Malings et al. (2017). Because of the computational complexity in using the fully-connected GP, we
constrain the number of data points to predict the surface temperature of each location.

Baseline 1: We only input the 12km×12km zonal average to the GP model during the test period
with 6 hourly intervals.
Baseline 2: In addition to Baseline 1, this case uses field measurements yi(t) within a radius of 10
km sub-domain at 9 previous timestamps (Current time − [00:00, 00:30, 01:00, 03:00, 06:00, 09:00,
12:00, 18:00, 24:00]).

The short-term forecast is conducted by implementing a Gaussian linear smoother, also known as a
Kalman Filter (or smoother) (KF). The KF estimates the state with measurements as described in
Barber (2012) and Welch and Bishop (1995). During the forecast procedures, the KF provides the
posterior distribution of the temperature field with the observations on field data and the external
coarse forecast.
The trained model predicts the reanalyzed surface temperature by WRF-PUCM from 00:00
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Table 2: Summary of use cases
Field measurement External forecast

Grid spacing Time interval Zonal scale Time interval

Case 1 6km 30min - -
Case 2 6km 30min Domain size 6 hourly
Case 3 6km 30min 12km×12km 6 hourly
Baseline 1 12km×12km 6 hourly 12km×12km 6 hourly
Baseline 2 6km (<10km) various 12km×12km 6 hourly

(a) New York (b) Pittsburgh

Figure 2: Forecast error corresponding to prediction lead time (RSME)

Aug/01/2019 to 00:00 Aug/04/2019 (UTC), which is at least one year apart from the training
data. For the different settings on the prediction lead time (00:30, 01:00, 03:00, 06:00, 09:00, 12:00,
18:00, 24:00 ahead), Fig 2 illustrates the prediction error (root mean squared error; RSME) with the
various use cases and baselines. In most use cases, the proposed model showed reduced forecast
errors than the baselines. On average, Case 3 provides 56% less forecast error than that of Baseline 1
while showing 60% less error, compared to Baseline 2. Reminded that Case 1 and Case 2 use much
less information to forecast, the numerical test verifies the proposed model has considerable capacity
to predict the short-term surface temperature.

A further investigation is conducted with different error measures. Fig 3 shows the statistical
summary of the additional error measures over the target domain using the coefficient of variation in
the mean absolute error (CvMAE) and the Pearson linear correlation coefficient (r); the details of
the error measures are listed in Malings et al. (2019). Even with the different error measures, the
numerical investigation confirms that the proposed model produces an adequate quality of prediction
for short-term meso-scale temperature.

5 Heat risk assessment

Finally, we integrate the surrogate model into a framework to assess the urban heat risk. The risk
of extreme events is often evaluated by the occurrence rate of the events for the given period. The
occurrence rate of a maximum that reaches a threshold at least once during the time interval is often
referred to as the first-passage probability. Evaluating the first passage probability is still challenging,
but an approximated solution is commonly adopted for most applications. With an assumption of
the Poisson arrival for the crossing event, Lutes and Sarkani (1997) and Yi et al. (2019) provides an
approximated solution in an analytic form. Fig 4 illustrates the evaluated first passage probability with
the threshold 32◦C in the New York area. Fig 4 (a) represents the marginal(prior) daily probability
over the domain while (b) represents the updated (posterior) probability from 00:00 Aug/02/2020
to 00:00 Aug/04/2020 with the field measurement (until 00:00 Aug/02/2020) and the external 6
hourly forecast (up to 00:00 Aug/04/2020) as in Section 4. For the posterior test period, the highest
risk to exceed 32◦C is located in Sayreville, New Jersey, with the exceedance probability of 0.4551,
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(a) New York (b) Pittsburgh

Figure 3: Summary of statistics of locational forecast error (R vs CvMAE)

(a) Prior probability (b) Posterior probability

Figure 4: Updated heat risk from 00:00 Aug/02/2020 to 00:00 Aug/04/2020

and its maximum temperature is recorded as 30.18◦C according to the test data. This numerical
implementation demonstrates how the surrogate model provides advanced insight regarding the heat
risk, being integrated with the existing probabilistic risk analysis framework.

We also assess the risk of UHI for the two test domains. In this test, the risk of UHI is considered as
the occurrence rate of the maximum temperature gap between the urban areas and the surrounding
environments to exceed any threshold during the day (11:00 - 16:00; local time). Fig 5 illustrates the
quantified risk of UHI as the exceedance probability curve for the 5 hours of daylight time. The result
shows an intensive UHI is more likely to happen at New York than Pittsburgh, during the daylight
hours.

6 Conclusion

We developed a surrogate model to forecast short-term meso-scale surface temperature as an alterna-
tive to a computationally intensive forecasting system, WRF-PUCM. To forecast surface temperature,
Kalman Filter/Smoother based method was implemented. We calibrated the model and tested pre-
diction performance in the domains, around New York and Pittsburgh, for the multiple model-use
cases. The numerical test verified that the proposed model produces an adequate quality of predic-
tion at a relatively low computational cost. In the New York domain, the proposed model showed
1.59-0.99◦C of 3 hours-ahead prediction error in root-mean-squared error (RMSE), with 0.94-0.95
correlation coefficient (r), depending on model-use scenarios. Similarly, the 3hours-ahead prediction
error (RMSE) is measured as 1.30-1.05◦C, showing 0.94-0.96 r-value, in the Pittsburgh domain.
Finally, we integrate the developed model into a probabilistic risk analysis framework that enables
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the surrogate model’s advanced usage. The expanded application testifies that the surrogate model
can provide a more widened inference on the phenomenon. As results of risk assessment, heat-risk
over the domains is evaluated as a map of posterior probability that exceeds extreme temperature
for the given period of time, from 00:00 Aug/01/2020 to 00:00 Aug/04/2020, and the occurrence
rate of urban heat island is also calculated for both domains. We expect such augmented inference
can benefit the public by enabling informed personals and decision-makers to improve community
resilience.

Figure 5: First passage probability curve for the urban heat island
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