
Modular mobile robot design selection with deep
reinforcement learning

Julian Whitman, Matthew Travers, and Howie Choset
Department of Mechanical Engineering

Carnegie Mellon University
Pittsburgh, PA 15213
jwhitman@cmu.edu

Abstract

The widespread adoption of robots will require a flexible and automated approach
to robot design. Exploring the full space of all possible designs when creating a
custom robot can prove to be computationally intractable, leading us to consider
modular robots, composed of a common set of repeated components that can be
reconfigured for each new task. But, conducting a combinatorial optimization pro-
cess to create a specialized design for each new task and setting is computationally
expensive, especially if the task changes frequently. In this work, our goal is to
select mobile robot designs that will perform highest in a given environment under
a known control policy, with the assumption that the selection process must be
conducted for new environments frequently. We use deep reinforcement learning
to create a neural network that, given a terrain map as an input, outputs the mobile
robot designs deemed most likely to locomote successfully in that environment.

1 Introduction

The robotics community has embraced modular robots for their potential to produce customized
solutions for a broad variety of tasks. Our experience with modular robotics has revealed another
advantage: they can help accelerate the robot development process by offering the user the opportunity
to prototype, on real robots, different designs in quick succession. But, to use modular robots
effectively, one must decide which components to use in the robot, where the best design may depend
on the task. Our goal is to augment the robot engineering process by identifying promising designs
for a given task. The contribution of this work is a design generation system which helps a user
efficiently select a mobile robot design to prototype for a given environment.

Our long-term goal is to create a process that creates modular robot designs to complete a task in
any specified environment. Prior modular design synthesis methods (1; 2) introduced the notion
of incrementally constructing and searching a tree of modular arrangements for manipulators. We
extend this idea to mobile robots, where each node added as a child to a current node represents
adding a module to the robot, as shown in Figure 3. The construction of this tree can be viewed as a
series of states and actions. Each state represents a partially complete design. Each action represents
adding a module, forming edges between states on the tree. Under this formulation, we learn a
state-action value function (3) which approximates the benefit of adding each module type given the
task. We train a deep neural network to approximate this value function (4). Completed designs are
simulated, and their resulting performance is used to learn about the capabilities of each design in
each environment.

We recognize that the task/environment in reality can never exactly be replicated in simulation.
Therefore, we require our algorithm to output multiple designs, and a ranking of their estimated
performance, such that a user can physically test or choose between them. The algorithm can explore

Workshop on machine learning for engineering modeling, simulation and design @ NeurIPS 2020



Chassis Leg Wheel

Figure 1: We present a deep reinforcement learning method to create a modular robot design generator.
The robots used in this work are comprised of legs and wheels on chassis shared among all designs.
Each limb type can be easily interchanged, lending the robot different capabilities on different terrains.
In this picture, we show these modules used to create a hexapod, a robot with both legs and wheels,
and a car.

designs inexpensively in silico, providing new insights about designs that may have been previously
unconsidered by an expert user, or providing evidence to support user intuition. In this work, we
consider robots with various combinations of legs and wheels (Fig. 1); our intuition and experience
leads us to think that on rough terrain, legs will perform better, and on smooth ground, wheels may
perform better. Our algorithm can support or contradict such ideas in a data-driven manner, as well
as suggesting less intuitive leg-wheel combinations that may have surprising capabilities.

2 Background

We find parallel design synthesis problems in the chemical engineering literature, where machine
learning has been used to design novel molecules, selecting component atoms and bonds from a
discrete set (5; 6; 7; 8). In particular, Zhou et al. (8) used a deep reinforcement learning paradigm for
molecule discovery by sequentially add atoms to a molecule, which is similar to our robot selection
methods.

Unlike the task of molecule generation, a challenge in the robot design problem is that the optimal
design depends on both the task and the control policy, such that either a new policy must be created
for each design, or a policy must be iteratively developed in concert with the design. Wang et al. (9)
used an evolutionary algorithm to optimize robot design while learning a control policy. Schaff et
al. (10) learned a policy and a distribution over designs at once, narrowing the distribution at each
iteration to converge on an optimal design. Ha et al. (11) used a deep neural network to output both
the design parameters and control actions. These methods optimize a single design and control policy
for a given environment, and each search conducted is computationally expensive. As a result, if the
environment is altered, these algorithms must be restarted, making them costly to use as a design
space exploration tool in rapid-prototyping.

Deep function approximators optimized for a single policy and design, as in (9; 10; 11), do not retain
information about how various designs performed for use in future searches. In contrast, we use a
deep function approximator to encode a mapping between environment and robot enabling us to
select a design for a given environment through computationally inexpensive inference rather than
comparatively expensive training or evolution. We also output a distribution of multiple designs for a
single terrain, presenting the user with more than one option to prototype. In our past work (1), a
tree of modular manipulator designs was incrementally constructed and searched using a DQN. This
work adapts this method to modular mobile robots.

2



(a) (b)

Figure 2: Our modular designs are evaluated in simulation to gather data on their performance over
terrains of varying roughness. Then, our design selection algorithm is used to predict the best design
for each environment. (a) For example, smooth terrain (top) may be well suited for wheels. The top
image shows a simulated car robot in near-flat terrain. Terrain with low-lying features (middle) may
be suited to a combination of legs and wheels. The middle image shows a simulated robot with both
legs and wheels. Terrain with taller features (bottom) may be suited to robots with only legs. The
bottom image shows a simulated hexapod on terrain with tall features. (b) This figure depicts designs
considered valid during training. The left side of each of these designs is the “front”. Each of these
12 designs has a different permutation of legs and wheels.

2.1 Deep Q-learning for Modular Robot Design

We treat the modular robot design problem as a finite-length Markov Decision Process with a discrete
action space, in which the robot is constructed by adding one module at a time. We define a complete
design as one that has attachments to all available ports specified, and a partial design as one that
does not. At each time step t, the agent selects an action at that adds a module to one of the open
ports on the chassis of the partial robot (see Fig. 3). The state st contains the partial design, so the
next state st+1 depends deterministically on only the previous state and the module added. Each
action results in a new design state and a scalar reward rt from the environment. In this context
the set of all robot modules defines the action space A, while the set of partial and complete robots
defines the state space, S.

We define the return at step t as Rt =
∑T
t′=t rt′ . The state-action value function Qπ : S ×A 7→ R is

then defined as the expected return given action at is taken in state st following policy π : S 7→ A,
Qπ(s, a) = E[Rt|st = s, at = a]. Q-learning estimates the optimal state-action value function Q∗,
which can be defined in terms of the Bellman equation,

Q∗(st, at) = max
π

E
[
rt +max

a′∈A
Q∗(st+1, a

′)

]
. (1)

Deep Q-networks (DQN) use a deep neural network as a function approximator Q(s, a; θ) with
network parameters θ to approximate Q∗(s, a) (4). We train this network with experience replay (12)
and a target network (13). We condition the value outputs on the task (14), enabling the DQN to
apply to a range of tasks (in this case, environments to be traversed).

3 Methods

In order to select a robot design for a given terrain, we learn a design generator G : T → D which
maps from a terrain grid τ ∈ T ⊂ RL×W (terrain height measurements with length and width

3



Root of tree (chassis with no limbs)

Decision 1

Evaluate design in 

simulation with 

control policy

Decision 2

Decision 3

Figure 3: We search for modular mobile robot designs by viewing the design space as a tree, in which
modular limbs are sequentially added from front to back on the chassis. A deep neural network is
used to learn a state-action value function for each decision made on this tree, conditioned on the
terrain that the robot will operate in. This figure shows an example sequence of decisions on such a
tree. At the root lies a chassis with no modules, and each step adds a module, resulting leaf nodes
containing robots with various permutations of legs, wheels, and ports deliberately left open.

resolution L×W ) to a design d ∈ D (the space of possible designs). The design is evaluated using
a pre-defined controller. Terrains have randomly distributed density and height of terrain features,
where samples from the distribution T are elements of T . We optimize the parameters of φ of the
generator neural network to maximize the expected robot performance criteria P over the terrain
distribution,

φ∗ = argmax
φ

Eτ∼T
[
P (Gφ(τ), τ)

]
. (2)

Here, the performance P is the distance travelled by the design over the terrain in a fixed time span,
explicitly dependent both on the design d = Gφ(τ) and terrain. Designs are drawn from the design
generator, which learns to output designs for an input terrain. After training, the design generator is
used to identify promising designs for a given terrain.

The performance of a design depends on how that design will be controlled. Our design selection
method is agnostic to the particular control policy used, as long as each design uses the same controller
consistently. The performance criteria P is queried by simulating the control policy for a fixed time
span and measuring the final x-position of the robot, averaged over multiple trials. We use a modular
reactive policy network which directs the robot forwards along the x-axis through the terrain, and
corrects its course toward the x-axis, regardless of what components are present in the robot. This
method is currently under review, and we plan to include further details about the control policy
in future versions of this work. A high-level controller observes the robot position and sends a
body-frame heading command to the mid-level controller. The mid-level control takes the heading
command, robot IMU readings, and joint sensor readings, and sends joint-level commands. We use a
Pybullet simulation (15) with robot models corresponding to physical hardware (Fig. 2) made from
components produced by Hebi Robotics (16).

3.1 Module selection DQN

Our algorithm assembles a mobile robot one module at a time, as illustrated in Figure 3, using a deep
Q-network to choose modules. In this section we define the states, actions, and reward signals in
greater detail.

We encode the design d as a list of one-hot vectors, where each index in a single vector indicates a
type of module selected, with a user-set maximum number of modules in the arrangement Nmax.
Modules that are not yet chosen in the design are are represented by vectors of zeros to maintain a
fixed-size input. We currently restrict our designs to symmetric designs on a chassis with six ports,
leading to Nmax = 3 modules to be chosen. The terrain τ contains the height of the terrain over a
grid of points, and is passed first into convolutional layers. The output of the convolutional layers are

4



Convolutional 

layers

Fully 

connected 

layers

Terrain height map

Partially complete 

robot design

State-action value 

of adding each 

module type

Flatten and 

concatenate

Figure 4: The neural network used takes the terrain grid, passed through as series of convolutional
layers (Conv2D), and the design encoding, then passed through a series of fully connected (FC)
layers. The output of the network is interpreted as the state-action value of each module type that
could be added to the partially complete robot design.

flattened and appended to the current design, and passed through a series of fully connected layers
with ReLU activation (Fig. 4).

At each step, an action indicates a module type from the set of Nm module types. We use Nm = 3
module types: legs, wheels, or none (allowing unoccupied ports). We append onto the design an
additional one-hot vector of length Nmax which is set to the index of the current open port on
the chassis, indicating which port the next module will be added to. The output of the network is
interpreted as the state-action values of adding each type of module to the partial design. An episode
always ends after Nmax actions, such that the ports on the robot have either been assigned modules
or designated as deliberately unoccupied.

Each action results in a reward r = 0 except for the terminal (third) action. Note that if an additional
cost were added to (2) to penalize for number or mass of modules, non-terminal rewards could
be used to alter the output designs accordingly, as was the case in (1). At the terminal action, the
completed robot design is evaluated. We deem some designs undesirable, for instance those with the
front or back port unoccupied, and thus treat them as invalid and assign them a terminal reward of
−10. Valid designs are sent to the simulator to evaluate their performance within the input terrain.
Multiple simulations are run for the same robot and terrain, with slightly perturbed intial states, to
obtain an average performance for that terrain. The average distance travelled in meters after 150
steps is then returned as the reward.

In our current implementation, we allow only 12 valid designs, shown in Fig. 2. An alternate
formulation of our method would be to learn the total value of each of the designs separately, or even
to exhaustively simulate all designs and rank them. However, we expect such approaches would
not scale as the number of modules on the design increases– for instance, even with these same
components, were we to pick the limbs on the left and right side of the robot independently, there
would be 144 (over 10 times as many) possible designs . Our algorithm has an action space scaling
with the types of modules, meant to address this combinatorial explosion in state space size. In
our ongoing work, we are expanding the robot design space with a wider range of possible module
combinations.

3.2 Training process

During training, state-action values are learned from randomized terrains. At each episode, a terrain
is created from randomly placed blocks, with upper and lower bounds on maximum block height and
minimum distance between blocks. The height at a grid of points on this terrain is measured as input
to the DQN. The DQN is called repeatedly, each time with the terrain and current design as input.
At first, the design input is empty, and after each call to the DQN, a module is added to the design.
The states, actions, and rewards are stored in a replay memory buffer. We use Boltzmann exploration
with a temperature hyperparameter that is lowered over the course of training. After each episode, we
sample mini-batches from the replay buffer and step the optimizer.

3.3 Sampling tree to get multiple designs

The design selection networks are first trained to recognize patterns in how various combinations of
modules contribute to effective locomotion over a given terrain. After training, the design selection
network is used to conduct a computationally efficient design search. To use the network for inference,
first the height map is measured of the terrain to traverse. Then, that height map is input to the
generator networkM = 100 times in a batch, and design choices are made by interpreting the softmax

5



Table 1: Preliminary results from design selection network. On each terrain, with low, mid, or high
roughness, we compare the output designs d with the five highest performance estimates (P ) from
the network, or the minimum and maximum from three simulation runs. Designs are specified by
the modules chosen: a leg (l), wheels (w) or none (n) on each port. The at least four of the top five
designs overlap between the estimated and simulated average performance in the three terrains.

Low Terrain, 5/5 Match Mid Terrain, 5/5 Match High Terrain, 4/5 Match

Estimated Simulated Estimated Simulated Estimated Simulated
d P d P min-max d P d P min-max d P d P min-max

lwl 10.9 lww 10.7 - 11.5 lnw 4.6 lwl 7.5 - 9.5 lll 3.9 wll 4.6 - 5.2
wwl 10.3 wwl 11.0 - 11.1 lwl 4.6 lll 4.2 - 4.9 wll 3.1 lll 4.7 - 4.9
lww 10.3 lwl 10.9 - 11.1 lll 4.6 lnw 3.5 - 5.6 lnw 2.7 lnl 3.9 - 4.5
wnl 8.1 wnl 8.7 - 9.7 wll 4.3 wll 1.5 - 5.4 lwl 2.6 lwl 2.0 - 5.0
wll 7.0 wll 6.8 - 7.2 llw 4.2 llw 2.3 - 5.3 llw 2.6 lnw 2.0 - 4.0

of the Q-value outputs as the weights of a categorical distribution. This results in a set of designs
d1 . . . dM , which may contain duplicates. The Q-values at the final step are estimates of the expected
reward obtained by each design. We then sort the output designs by terminal Q-value, to obtain a
ranking of the top designs for that environment. This means that we can obtain multiple designs to
prototype and deploy rather than only a single design, along with estimates of their performance.

4 Results

To evaluate the trained design selection network, we applied it to three test environments with
different randomly generated terrain distributions, from low (nearly flat) to high (frequent high terrain
features). We sampled designs using the procedure described above, and collected a ranking of the
best-performing designs. Then, we simulated all 12 valid designs in each environment as a basis
of comparison. Each design was driven multiple times through the same environment to obtain an
average performance. We compared the best designs in simulation with the estimated best designs
from the DQN.

The results of this experiment are summarized in Table 1. The predicted top five designs from the
estimator and simulation overlap with 4 or 5/5 designs in each terrain. Obtaining an exact overlap in
rankings between estimator and simulation is difficult, as there is high variability in performance. For
instance, we observed on some terrains there are patches on which the robot may become stuck on
some trials but may narrowly avoid on others. In our ongoing analysis we are developing additional
metrics by which to judge the output of the network.

After training, the network can be used in real-time to generate designs conditioned on the terrain. We
made an interactive graphical user interface, in which a slider bar changes the height of the randomly
generated terrain. The robot design is updated and simulated in real-time as the environment changes,
allowing us to quickly investigate how different terrain feature distributions effect the optimal design,
without additional training or intensive computation. A video showing this interface can be found at
https://youtu.be/f3PhXnuxk7g.

5 Ongoing work

Our current work involves applying design selection methods to physical terrain and robots. We can
scan a region of interest with a hand-held RGB-D sensor to create a terrain map, and designate the
start point and desired direction of motion. This terrain map will be entered to the DQN to select
suggested designs, which will be constructed and deployed in reality.

Before training, we specify controllers for all possible designs, then the performance of the robot
in a given environment is conditional on the efficacy of that controller. The current control policy
used for rough terrain does not include exteroceptive measures of the environment, that is, it cannot
preemptively adapt its behavior to upcoming terrain and only adapts to what is sensed through

6

https://youtu.be/f3PhXnuxk7g


proprioception. Our design selection method can still be applied as more complex control methods
are developed, or as environment-dependent longer-horizon planning is added to the controller.

6 Broader Impacts

Our goal is to augment the conventional robot engineering process by considering design and control at
once. Our methods provide an avenue for exploring the relative benefits of distinct design components,
for instance the choice between legs and wheels, in a data-driven manner. We hope that in the future
this will enable non-expert users to customize robots, and that design synthesis algorithms will have a
wide reach, given the potential applications for modular systems in manufacturing, defense, or space
robotics.

7 Acknowledgements

This work was supported by NASA Space Technology Research Fellowship NNX16AM81H and by
a Siemens Futuremakers Fellowship.

References
[1] J. Whitman, R. Bhirangi, M. J. Travers, and H. Choset, “Modular robot design synthesis with deep

reinforcement learning.,” in AAAI, pp. 10418–10425, 2020.

[2] S. Ha, S. Coros, A. Alspach, J. M. Bern, J. Kim, and K. Yamane, “Computational design of robotic devices
from high-level motion specifications,” IEEE Transactions on Robotics, vol. 34, no. 5, pp. 1240–1251,
2018.

[3] R. S. Sutton, “Learning to predict by the methods of temporal differences,” Machine learning, vol. 3, no. 1,
pp. 9–44, 1988.

[4] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller,
A. K. Fidjeland, G. Ostrovski, et al., “Human-level control through deep reinforcement learning,” Nature,
vol. 518, no. 7540, p. 529, 2015.

[5] B. Sanchez-Lengeling and A. Aspuru-Guzik, “Inverse molecular design using machine learning: Generative
models for matter engineering,” Science, vol. 361, no. 6400, pp. 360–365, 2018.

[6] N. De Cao and T. Kipf, “Molgan: An implicit generative model for small molecular graphs,” arXiv preprint
arXiv:1805.11973, 2018.

[7] R. Gómez-Bombarelli, J. N. Wei, D. Duvenaud, J. M. Hernández-Lobato, B. Sánchez-Lengeling, D. She-
berla, J. Aguilera-Iparraguirre, T. D. Hirzel, R. P. Adams, and A. Aspuru-Guzik, “Automatic chemical
design using a data-driven continuous representation of molecules,” ACS central science, vol. 4, no. 2,
pp. 268–276, 2018.

[8] Z. Zhou, S. Kearnes, L. Li, R. N. Zare, and P. Riley, “Optimization of molecules via deep reinforcement
learning,” Scientific reports, vol. 9, no. 1, pp. 1–10, 2019.

[9] T. Wang, Y. Zhou, S. Fidler, and J. Ba, “Neural graph evolution: Automatic robot design,” in Int. Conf. on
Learning Representations, 2019.

[10] C. Schaff, D. Yunis, A. Chakrabarti, and M. R. Walter, “Jointly learning to construct and control agents
using deep reinforcement learning,” in 2019 International Conference on Robotics and Automation (ICRA),
pp. 9798–9805, IEEE, 2019.

[11] D. Ha, “Reinforcement learning for improving agent design,” Artificial Life, vol. 25, no. 4, pp. 352–365,
2019.

[12] M. Riedmiller, “Neural fitted q iteration–first experiences with a data efficient neural reinforcement learning
method,” in European Conference on Machine Learning, pp. 317–328, Springer, 2005.

[13] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning with double q-learning,” in Thirtieth
AAAI conference on artificial intelligence, 2016.

[14] T. Schaul, D. Horgan, K. Gregor, and D. Silver, “Universal value function approximators,” in Proceedings
of the 1st Annual Conference on Robot Learning, pp. 1312–1320, 2015.

7



[15] E. Coumans and Y. Bai, “Pybullet, a python module for physics simulation for games, robotics and machine
learning.” http://pybullet.org, 2016–2019.

[16] “Hebi Robotics, 2020. [Online]. Available: www.hebirobotics.com.”

8

http://pybullet.org

	Introduction
	Background
	Deep Q-learning for Modular Robot Design

	Methods
	Module selection DQN
	Training process
	Sampling tree to get multiple designs

	Results
	Ongoing work
	Broader Impacts
	Acknowledgements

