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Abstract

In this paper, we introduce an efficient backpropagation scheme for non-
constrained implicit functions. These functions are parametrized by a set of learn-
able weights and may optionally depend on some input; making them perfectly
suitable as a learnable layer in a neural network. We demonstrate our scheme on
different applications: (i) neural ODEs with the implicit Euler method, and (ii)
system identification in model predictive control.

1 Introduction
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Figure 1: Kepler’s Equation implicitly de-
fines E as a function of e for a given M .
We optimize e such that the implicitly de-
fined E(e) matches a target value. The IFT
provides the means for estimating the im-
plicitly defined gradient ∂E/∂e. The gradi-
ent field provides information even at inex-
act argmin-solutions, i.e. points that are not
on the argmin-line also point to the target.

Implicit functions can be found in a wide range of
domains, e.g. physics, numerics, or math. A famous
example is Kepler’s equation: M = E − e sin(E),
which is elemental in orbital mechanics (see Fig 1). It
estimates the relation between the eccentric anomaly
E, mean anomaly M , and eccentricity e. Contrarily,
learning such an implicitly defined function is not fea-
sible with the standard deep learning practice, since
it commonly consists of a chain of functional map-
pings described by algebraic operations. We intro-
duce the framework of unconstrained and non-convex
Differentiable Implicit Layers (DIL) as a plug-and-
play extension for neural networks that enables ef-
ficient learning of such implicitly defined problems.
An implicit layer [Gould et al., 2019] is defined as
a mapping that takes an input x ∈ RDx and pro-
duces an output y ∈ RDy that is obtained as an
argmin-solution to the scalar-valued score function
f : RDy+Dx+Dθ → R, parameterized by θ ∈ RDθ :

y := argmin
u

f(u;x,θ). (1)

We can interpret Kepler’s equation as an argmin-problem with the parameters e and M : E =
argminu(u− e sin(u)−M ; e,M)2. During network training, we target to optimize the parameters
θ, such that the output y of the implicit layer exhibits a desired behaviour on a subsequent task, i.e.
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minimizes a scalar loss L(·). Consequently, we need to solve the nested argmin-problem:

argmin
θ
L
(

argmin
u

f(u;x,θ),x,θ
)
. (2)

Note that the loss function may also depend on the parameters θ (acting as a regularizer) and the
input x. Likewise, we aim to estimate in Fig. 1 the correct e such that the implicitly defined eccentric
anomaly E matches a target value.

Most research on implicit layers for neural networks focuses on specific architectures [Liao et al.,
2018, Bai et al., 2019] or argmin-problem classes [Amos and Kolter, 2017, Amos and Yarats, 2020],
e.g. of convex type [Agrawal et al., 2019]. Concurrent work on general implicit networks [Gould
et al., 2019, Zhang et al., 2020] without any restriction on problem or network type, did not scale to
training of heavily parameterized implicit layers with high dimensional output. Common handicap
of the aforementioned general approaches is the explicit calculation and inversion of large Jacobians.
However, the existing solutions are prohibitively costly to be presented as a general purpose layer
for neural networks

We propose a method that generalizes existing problem-specific solutions to a more comprehensive
framework, while bringing them an unprecedented level of scalability. Our differentiable implicit
layer consists of two parts: (i) the learnable argmin-problem, and (ii) the solver. The solver is used
only during the forward evaluation, i.e. it does not influence the backward evaluation, by-passing
a large set of potential numerical difficulties. During training, the solution y is evaluated on the
downstream scalar loss functionL(·), for which we provide an efficient backward evaluation scheme
by combining the Implicit Function Theorem (IFT) and the Conjugate Gradient Method (CG). In
contrast to prior art, our approach omits the explicit calculation and inversion of large Jacobians,
which are typically necessary for IFT evaluation. Our backward evaluation relies solely on efficient
to estimate vector-Jacobian products (VJP). We summarize our contribution as below:

• We propose unconstrained and non-convex parameterized differentiable implicit layers for
neural networks as a construct that vastly enhances the feasible problem set for the auto-
matic differentiation technology.

• We make differentiable implicit layer training scalable for over-parameterized neural net-
works with a large output dimensionality.

• We demonstrate the efficiency of our method by applying it to (i) implicit solvers for neural
ODEs, and (ii) model predictive control.

2 The proposed Framework

The forward evaluation of a DIL consists of applying a potentially non-differentiable solver to an
argmin-problem in order to solve for y by minimizing the score function f(· ;x,θ). The solver is
used solely for the forward evaluation. Hence, we can treat the solver in our proposed framework
as a blackbox. However, the main difficulty in developing an efficient framework for differentiable
implicit layers lies in the backward evaluation. When y is passed on to a subsequent task, i.e. a
scalar loss function L(·), the Bi-Level IFT (Thm. 1), which is an extension to the standard IFT (see
Appx. A), provides an estimate to the gradients dL(y)/dx, and dL(y)/dθ.

Theorem 1 (Bi-Level IFT.) Let y be the solution to a parameterized argmin-problem (Eq. 1). If y
is evaluated on a downstream scalar loss function L(y,x,θ) (Eq. 2), the gradients with respect to
the input x (exchangeable θ) are obtained exclusively by vector-Matrix products as:

dL
dx

T

= − ∂L
∂y

T

H−1︷ ︸︸ ︷(
∂2f

∂y2

)−1
︸ ︷︷ ︸

vector-inv. Hessian product := gT

(
∂2f

∂x∂y

)
+
∂L
∂x

T

= − gT
(
∂2f

∂x∂y

)
︸ ︷︷ ︸

VJP

+
∂L
∂x

T

.

Conjugate-Gradient-Method. Explicitly inverting the HessianH is intractable during training of
a neural network, since it is computational too expensive ∝ O(Dy

3). Moreover modern automatic
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differentiation libraries lack the capability of estimating the Hessian efficiently. Instead, we directly
estimate the vector-inverse Hessian product g as a solution to the linear system of equations (LSE):

H

g︷ ︸︸ ︷(
H−1

∂L
∂y

)
︸ ︷︷ ︸

VJP: (gTH)T

=
∂L
∂y

. (3)

Since the Hessian is evaluated at a minimum, i.e. the solution y to the argmin-problem, the Hes-
sianH is positive semi-definite (PSD) and the conjugate gradient method is suitable for solving the
LSE. The resulting LSE can be solved via the CG method without the need of evaluating the Hes-
sian explicitly. Each CG step requires one grad-function call, which estimates the vector-Jacobian
product (VJP), and converges in the absence of round-off errors after at most Dy steps [Saad, 2003].
In contrast, the naive method of explicitly inverting the Hessian H requires firstly Dy VJP evalua-
tions in order to build the Hessian, which are as many as CG requires for the full evaluation of the
vector-inverse Hessian product g. The costly inversion of the Hessian comes additionally on top.

Algorithm. We summarize our framework in Alg. 1. During the forward-evaluation of a DIL
the score function f with optional input x is minimized with a blackbox solver. As a result we
obtain the solution y. The backward-evaluation receives the vector-valued gradient of the loss
function L(·) with respect to the optimal solution y, i.e. ∂L(y)/∂y. The gradients with respect to the
parameters θ and input x are estimated via the Bi-Level IFT (Thm. 1). The function VJP CG uses
a CG method, which relies on vector-Jacobian products, in order to estimate vector-inverse Hessian
product g without explicitly calculating the HessianH .

Algorithm 1 Forward/ Backward Evaluation for Differentiable Implicit Layers
Input: Score Function f(·;x, θ), Parameters θ, solver(·)
function Forward(x) . Optional Input x
y = solver(f(·;x, θ)) . Solve for argmin-solution y with user defined solver
return y

function Backward(y, ∂L/∂y) . According to Thm. 2
Set g1 = ∂f/∂y , g2 = ∂L/∂y . Score, Loss function gradient at optimal solution

g = VJP CG(y, g1, g2) . vector-inv. Hessian product gT = ∂L
∂y

T
( ∂

2f

∂y2
)−1

dL/dx = −grad(g1,x, grad outputs = g)T . Return−gT ∂2f
∂x∂y in dL

dx
T

dL/dθ = −grad(g1, θ, grad outputs = g)T . Return−gT ∂2f
∂θ∂y in dL

dθ
T

return dL/dx, dL/dθ
function VJP CG(y, ∂f/∂y, ∂L/∂y) . CG with efficient grad calls

Init x0

Set r0 = ∂L/∂y − (grad(∂f/∂y,y, grad outputs = x0)
T + εx0) . Add εx0 to tackle a singular Hessian

Set p0 = r0, k = 0
while ||rk|| > tol do
Apk = grad(∂f/∂y,y, grad outputs = pk)

T + εpk . Symmetric Jacobian: VJP = JVPT

αk = (rTk rk)/(pTk Apk)

xk+1 = xk + αpk
rk+1 = rk − αApk
βk = (rTk+1rk+1)/(rTk rk)

pk+1 = rk+1 + βkpk
k = k + 1

return xk+1 . Solution g inHg = ∂L
∂y

3 Applications

If not explicitly stated otherwise, we use CG during the evaluation of the IFT (as in Alg. 1). In the
first experiment we introduce implicit neural ODEs and compare our method to the adjoint training
method [Chen et al., 2018]. Lastly we explore our method in the context of model predictive control.

3.1 Solving Neural ODEs with the Implicit Euler Method

Dynamical systems are commonly described by an ordinary differential equation (ODE). The com-
monplace way to identify a dynamical system by neural networks is the neural ODE (NODE) [Chen
et al., 2018]. NODEs have been observed to introduce implementation challenges. Firstly, the
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adjoint training method [Chen et al., 2018] is well known to cause numerical instabilities due to
non-reversibility of the NODE [Gholami et al., 2019]. Further, the backward evaluation of the ad-
joint requires an additional computational costly solution to the induced ODE problem. Our DIL
framework is capable of addressing all of these points by introducing an implicit NODE formalism.
In the following, we focus for simplicity on the backward Euler solver.

Backward Euler NODE. When solving a NODE with the backward or implicit Euler method
[Hairer et al., 1993], we obtain the update rule:

dx = h(x;θ)dt
Backward−−−−−−−→
Euler

xt+1 = xt + h(xt+1;θ)∆t,

with the state x ∈ RDx and neural dynamical model h : RDx → RDx with parameters θ. The
backward Euler scheme is L-stable [Butcher, 2003] and has convergence order 1. The property of L-
stability, which only implicit solvers have, allows to use larger step sizes and, above all, making the
method suitable for stiff systems. Note the nuance that the backward Euler method uses h(xt+1;θ)
as opposed to the forward Euler, which uses h(xt;θ). Solving such an implicit problem can be
translated to residual minimization:

argmin
xt+1

r(xt+1;xt,θ) = argmin
xt+1

||xt+1 − (xt + h(xt+1;θ)∆t)||. (4)

When viewing the residual r(xt+1;xt,θ) as the learnable score function f with parameters θ and
input xt, we obtain a DIL and can evaluate the backward pass with our proposed Alg. 1. Now
it remains open how to estimate the solution xt+1. We obtain the solution xt+1 via fixed-point
iteration for non-stiff problems or for stiff problems via the Newton iteration:

x
(i+1)
t+1 = x

(i)
t+1 − H−1r

∂r

∂x
(i)
t+1︸ ︷︷ ︸

inv. Hessian-vector product := gr

,

with the Hessian Hr of r(xt+1;xt,θ). Chen and Duvenaud [2019] propose to approximate Hr by
its diagonal values or the identity matrix. However it is more favourable to have an exact evaluation
procedure, instead of relying on such approximations. Note that Hr is not necessary PSD, unless it
is evaluated at the solution xt+1. Consequently, the CG method as defined in Alg. 1 is not applicable
in order to estimate gr. However, we may still use the CG method if we modify the original LSE
[Shewchuk, 1994] by multiplying both sides withHT

r :

Hr

gr︷ ︸︸ ︷(
H−1r

∂r

∂x
(i)
t+1

)
︸ ︷︷ ︸

VJP: (gTr Hr)T=g̃r

=
∂r

∂x
(i)
t+1

Multiply both sides−−−−−−−−−−→
withHT

r

PSD︷ ︸︸ ︷
HT
r Hr gr︸ ︷︷ ︸

VJP: (g̃rTHr)T

= HT
r

∂r

∂x
(i)
t+1

.

Note that HT
r Hr is PSD and hence CG is applicable. Though the left-hand side of the modified

LSE looks prohibiting at first sight, it can be evaluated efficiently by any autodiff-library via two
grad-evaluations. Consequently, CG can be used with two grad-function calls per iteration. The
backward evaluation can be performed by the IFT as proposed in Alg. 1 or alternatively with the
adjoint method [Chen et al., 2018].

Runtime Profiles. Although a root finding problem (Eq. 4) needs to be solved during the forward
evaluation of a NODE with the backward Euler method, it is still faster than the default adaptive
step size solver DOPRI5 [Chen et al., 2018], as shown in Fig. 4a). If viewing the NODE with
backward Euler solver as a DIL, we observe during the backward evaluation a significant decrease
in the required computation time compared to the adjoint method (see Fig. 4b). Another benefit of
the DIL viewpoint is the independence of the backward evaluation time from the NODE stiffness,
which tends to increase throughout the training [Chen and Duvenaud, 2019].
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(a) NODE Forward evaluation.

20 21 22 23 24 25 26 27 28 29

Neural ODE Dimension [-]

10−3

10−2

10−1

100

T
im

e
[m

s]

Bwd. Euler/ IFT CG (ours)

Bwd. Euler/ IFT Naive

Bwd. Euler/ adjoint

Fwd. Euler/ adjoint

DOPRI5/ adjoint

(b) NODE Backward evaluation.

Figure 2: Mean ± standard deviation of forward/ backward evaluation times averaged over 100
NODE initializations (Layers: 2, Hidden size: 30). Equal accept criterions of the solution xk+1

were used for all methods.

Table 1: Average test MSE and standard errors on two
extrapolation tasks: Van der Pol (20runs, 2dim, 106 step
extrapolation), Spiral Data (20runs, 2dim, 150 step ex-
trapolation), and CMU Walking (10runs, 50dim, 297 step
extrapolation).

NODE Models Van der Pol Spiral Data CMU Walking

DOPRI5adj. 0.89± 0.15 0.13± 0.01 15.92± 2.10
Fwd. Euleradj. 0.68± 0.07 0.20± 0.01 12.17± 1.39
Bwd. Euleradj. 0.67± 0.12 0.09± 0.01 13.68± 2.02
Bwd. EulerIFT, Naive 0.38± 0.05 0.09± 0.00 11.57± 1.79
Bwd. EulerIFT, CG(ours) 0.40± 0.06 0.09± 0.01 11.43± 1.27

Predictive Performance. We bench-
mark the proposed Backward Euler
NODE on three time series forecasting
tasks. In the first experiment we gener-
ate 320 equally spaced observations ac-
cording to the Van der Pol equation1.
First 107 observations are used for train-
ing, next 106 observations for valida-
tion, and last 106 observations for test-
ing. In the second experiment, we gen-
erate 300 equally spaced observations
according to spiral dynamics 2. We use
the first 100 points for training, next 50 for validation and the final 150 for testing. In the third
experiment, we follow Yildiz et al. [2019] for designing the experimental setup using data from the
CMU motion capture library. The dataset is split into 16 sequences for training, three for validation,
and four for test. A detailed sketch of the used architectures are given in Appx. D.1. We observe
a consistent performance improvement compared to the adjoint method if the NODE discretized
by backward Euler is trained with the IFT. Using the much faster CG method during the backward
evaluation comes with no performance loss compared to the naive IFT evaluation.

3.2 Differentiable Path Planning

We adapt the well established setup of model predictive control (MPC) with moving horizon [Diehl,
2011]. At each time step we observe the current state of the system xobs. and plan the optimal
trajectory on a limited horizon H . After planning, the first control u0 is executed and the time step
is moved one step forwards. The optimization problem at the planning step can be formalized as:

argmin
u0:H

H∑
t=0

c(xt,ut;θc) , s.t. xt+1 = h(xt,ut;θh), x0 = xobs., (5)

with the control ut ∈ RDu , state xt ∈ RDx , dynamics h : RDx → RDx with parameters θh, and
cost function c : RDx+Du → R with parameters θc. By inserting the constraints we can interpret the
optimization problem (Eq. 6) as an instance of our framework DIL. We treat the observed state xobs.
as the optional input and θh, θc as the parameters of the score function. The output of this implicit
layer is the control sequence u0:H . We can efficiently return the derivatives of the control sequence
with respect to xk, θc, and θh via Alg. 1. An alternative approach is obtained by linearizing
the optimization problem. However, due to ill convergence properties, this approach did not scale
to neural dynamical models [Amos et al., 2018]. In the following paragraph we provide a proof
of concept that the cost function can be indeed learned by backpropagation through the trajectory
planning step, when dynamics is governed by a neural network. Therefore, we interpret Eq. 6 as a

1 ∂2x
∂t2
− µ(1− x2) ∂x

∂t
+ x = 0, with dt = 0.1 s and µ = 3

2 ∂x
∂t

= Ax3, with dt = 0.1 s and a1,1 = −1, a1,2 = 2, a2,1 = −2, a2,2 = −1/10,
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DIL (MPCIFT). We provide in Appx. C an additional experiment for the case of linear dynamics and
cost, in which we recover true dynamics and cost using only the observed control sequence.
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(a) Training Data with low vari-
ance at initial state.
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(b) Behavioural cloning with
high variance at initial state.
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(c) MPCIFT (ours) with high vari-
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Figure 3: Cart pole swing-up trajectories. Ground truth from the expert (left) and learned from
expert observations by behavioral cloning (middle) and our method (right).

Imitation Learning from Observations. Suppose we observe a dataset Dexp., which consists of
N trajectories x1:N

1:T with horizon T , generated by an expert policy. Note , the controls u1:N
1:T are not

observed. Let the expert policy be realized as the solution to the MPC problem as defined in Eq. 6.
We target to recover the expert policy by fitting a student policy to a sequence of state transitions
observed from the expert [Torabi et al., 2018, 2019]. The student policy is also evaluated as the
argmin-solution to the MPC problem (Eq. 6), though with a learned cost and dynamics function.
We approximate the dynamics functions with neural networks without using any prior information.
The cost function evaluates the distance between the observed state and a learnable target state. In
our setup we can query the true dynamical model, but do not know its functional form. The learnable
dynamics function is trained on (x,u,x′) triplets, with x ∼ Dexp., u ∼ U(umin,umax), and x′
as the true next state. The cost function is trained on the MSE between observed expert trajectories
and predicted trajectories. Alg. 2 in Appx. B summarizes the learning procedure.

Table 2: Average cost and standard error for cart-
pole swingup task (50 initial positions, 10 runs).
We test generalization capabilities by testing on
higher variance at the initial state. ∗ [Bain and Sam-
mut, 1996]

Low Variance High Variance
Model x0 ∼ N (0, 0.04I) x0 ∼ N (0, 0.08I)

Expert 9.2± 0.0 (9.3± 0.1)
BC∗ 14.6± 0.6 18.4± 1.4
MPCIFT(ours) 13.7± 0.4 14.7± 1.9

Imitating an Noisy Expert. We benchmark
the aforementioned imitation learning method
on the cartpole swing-up task. We replicate
the setup from Gal et al. [2016], i.e. pole
length 0.6 m, cart mass 0.5 kg, pole mass
0.5 kg, time discretization 0.1 s, and p(x0) =
N (0, 0.04I). The expert dataset consists of
100 trajectories with a length of 40 steps.
We evaluate the expert policy as the solution
to the argmin-problem (Eq. 6) via random
shooting (RS) [Rao, 2009]. We use a horizon
of 10 steps and 1000 particles for RS. Hence,
the trajectories inDexp. are rather noisy, as shown in Fig. 3a. During training of MPCIFT we initially
use a prediction horizon of 1 and increase it throughout training. We compare our proposed method
to behavioral cloning (BC) [Bain and Sammut, 1996], which learns a policy π : RDx → RDu .
Since we do not observe the control, we map the predicted control directly to the next state via the
learnable dynamics function and minimize the MSE between future states. The details of the used
network architectures are given in Appx. D.2. As shown in table 2, our method MPCIFT outperforms
behavioral cloning for and comes with improved generalization capabilities.

4 Related Work

Recurrent backpropagation (RBP) [Pineda, 1988, Almeida, 1990] is the first training method for a
specific type of implicit neural networks, i.e. infinitely deep recurrent neural networks. Recent work
on RBP extended this approach to efficient gradient estimation [Liao et al., 2018] or scaled it to
large neural networks [Zhang et al., 2018, Bai et al., 2019]. Other lines of work focused on specific
network architectures [Ghaoui et al., 2019] or argmin-problem structure, e.g. problems of convex
[Agrawal et al., 2019, Wang et al., 2019] or quadratic [Amos and Kolter, 2017, Donti et al., 2017]
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type. Gould et al. [2019] and Zhang et al. [2020] considered constrained non-convex implicit layers
as a generic building block. They proposed to evaluate the backward evaluation using the IFT.
However, their work used in the implicit layers functions with symbolic second order derivatives
[Gould et al., 2019] or estimated explicitly all terms [Zhang et al., 2020].

5 Scope and Limitations

In this work we have introduced the new general purpose framework of Differentiable Implicit Lay-
ers. For the first time implicit layers, without any restriction on problem or solution type, have been
scaled to heavily parameterized neural networks with large output dimensionality. We have demon-
strated our framework on a wide scope of applications. However, our framework assumes that the
underlying argmin-problem can be solved accurately. If the solution is incorrect, the Bi-Level IFT
(Thm. 1) does not apply anymore. It remains open up to which error tolerance convergence of an
DIL can be guaranteed. Preliminary tests suggested a generous tolerance, regarding the error of the
argmin-solution. Furthermore Conjugate Gradient methods with flexible preconditioning [Golub
and Ye, 1999, Bouwmeester et al., 2015] offer a interesting perspective in order to further speed up
and improve the backward evaluation of a DIL.
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A Implicit-Function-Theorem

Theorem 2 (IFT.) Let y be the solution to an parametrized argmin-problem (Eq. 1). The gradient with
respect to x (exchangeable θ) is obtained as:

dy

dx
= −

(
∂2f(y;x,θ)

∂y2

)−1(
∂2f(y;x,θ)

∂x∂y

)
.

Proof.
∂f(y;x,θ)

∂y
= 0 Since f is evaluated at a minimum.

d

dx

(
∂f(y;x,θ)

∂y

)
= 0 Differentiate both sides.

d

dx

(
∂f(y;x,θ)

∂y

)
=
∂2f(y;x,θ)

∂x∂y
+
∂2f(y;x,θ)

∂y2

dy

dx
By Chain rule.

0 =
∂2f(y;x,θ)

∂x∂y
+
∂2f(y;x,θ)

∂y2

dy

dx
Both results combined.

dy

dx
= −

(
∂2f(y;x,θ)

∂y2

)−1
∂2f(y;x,θ)

∂x∂y
Final result.

A.1 Bi-Level IFT

Theorem 1 (Bi-Level IFT.) Let y be the solution to an parametrized argmin-problem (Eq. 1). If y is
evaluated on a downstream scalar loss function l(y), the gradient with respect tox (exchangeable θ) is obtained
exclusively by vector-Matrix products as:

dL
dx

T

= − ∂L
∂y

T

H−1︷ ︸︸ ︷(
∂2f

∂y2

)−1

︸ ︷︷ ︸
vector-inv. Hessian product := g

(
∂2f

∂x∂y

)
+
∂L
∂x

T

= − gT
(
∂2f

∂x∂y

)
︸ ︷︷ ︸

vector-Jacobian product

+
∂L
∂x

T

.

Proof.
dL(y,x,θ)

dx

T

=
∂L(y,x,θ)

∂y

T dy

dx
+
∂L(y,x,θ)

∂x

T

Total Derivative

dL(y,x,θ)
dx

T

= −∂L(y,x,θ)
∂y

T (∂2f(y;x,θ)

∂y2

)−1
∂2f(y;x,θ)

∂x∂y
+
∂L(y,x,θ)

∂x

T dy

dx
via IFT.

B Algorithm for Imitation Learning from Observations with Differentiable
MPC

C Differentiable MPC for the Mass-Spring-Damper model

Background We consider a MPC controller with the cost and policy dynamics obtained by solving an
unconstrained infinite-horizon Linear Quadratic Regulator (LQR). The LQR optimizes a quadratic cost function
and defines linear dynamics:

argmin
u0:H

H∑
t=0

xT
t Qxt + u

T
t Rut , s.t. xt+1 = Axt +But, x0 = xobs. (6)

where A ∈ Rn×n is the state transition matrix, B ∈ Rn×m the input matrix, and Q ∈ Rn×n and R ∈ Rm×m

are a constant state and weight matrix respectively. The optimal control action that minimizes Eq. 7 is a linear
function of the state and a state feedback gain matrix K ∈ Rm×n [Recht, 2019]:

ut = −Ktxt , (7)

for K defined as:

K = (R+BTSB)−1BTSA, (8)
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Algorithm 2 Imitation Learning from Observations with Differentiable MPC
Input: Dexp., True MDP htrue(·), Learnable Dynamics h(·; θh), Learnable Cost c(·; θc)
function main(x)

while not converged do
train h( )
train c( )

function train h( )
x ∼ Dexp. . Sample Initial State
u ∼ U . Sample Random Control
x′ = htrue(x,u) . Query true MDP
x̂ = h(u, θh) . Imagine next state
θh = θh − lr∇θh ||x

′ − x̂|| . One Gradient Step on RMSE

function train c( )
x,x′ ∼ Dexp. . Sample subsequent States
Set score func. f =

∑H
t=1 c(ut,h(xt−1,ut−1; θh); θg) . Initial value h(x0,u0; θh) = xobs (Eq. 6)

u1:H = Forward(x) . Obtain MPC solution with Alg. 1 via RandomShooting.
x̂ = h(x,u1; θh) . Execute first control and imagine next state.
θc = θc − lr∇θc ||x

′ − x̂|| . One Gradient Step on RMSE for θc. Backward of Forward with Backward in Alg. 1.

where S ∈ Rn×n satisfies the Discrete Algebraic Ricatti Equation (DARE) :

ATSA− S − (ATSB)(R+BTSB)−1(BTSA) +Q = 0. (9)

As the time horizon tends to infinity the value function and the optimal state feedback gains K are time-
invariant. Thus for all t the control can be computed as: ut = −Kxt, which can be obtained as a solution to
the DARE.

In order to use the infinite-horizon LQR in differentiation-based learning, we need to be able to differentiate
through the DARE solution. Recently it has been shown how this can be done using an analytic derivative [East
et al., 2020]. Alternatively, we suggest that if we treat the DARE as the optimization problem

argmin
S

ATSA− S − (ATSB)(R+BTSB)−1(BTSA) +Q (10)

we can use the IFT to compute ∂S
∂A

, ∂S
∂B

, ∂S
∂Q

and ∂S
∂R

. For solving the DARE we use build in scipy routines.

Experimental Setup The setup is inspired by the imitation learning experiments shown in East et al. [2020]
and Amos et al. [2018]. The system matrices and initial input are defined as follows:

A =

[
0.00 1.00

− k

m
− c

m

]
,B =

[
0.00

− 1

m

]
,Q =

[
1.00 0.00
0.00 1.00

]
,R = 2.00, x0 =

[
0
3

]
,

where the state variables (xt) indicate the position and velocity of the given mass m. The parameters k and c
are a stiffness parameter and a damping coefficient respectively. The values for m and k were fixed to = 1.
The considered c values were [1, 0.1,−0.6]. Since the performance was similar for all values, we report results
for c = 1 only.

The training data is generated by simulating a system for a given c value for the linear system dynamics
xt+1 = Axt + But. The expert matrix A was used to compute the true control matrix K and the trajectory
for xt was unrolled for a given time horizon. During this process the predicted controls ut = −Kxt are
recorded as the ”expert controls” to imitate. The first 50 elements of this trajectory were provided as the
training data. At train time a starting point was selected randomly and a prediction 6 steps ahead was made
with the current matrix Â. The learner matrix Â was initialized with the correct state transition matrix plus
an uniformly distributed random perturbation in the interval [−0.5, 0.5] added to each element. The predicted
controls were compared to the experts target controls with the goal to minimize the imitation loss:

L = ||u1:T (x;A)− u1:T (x; Â)||22 (11)

Note that in contrast to the previous experiment with imitation learning, here the state transitions are not avail-
able to the learner.

Results Figure 4 shows the imitation and model losses over 3000 optimization iterations. The reported
Analytic results are obtained by our replication of the analytic gradients, as proposed in East et al. [2020]. We
can see that for all initializations the imitation loss converges to a low value. Furthermore the declining model
loss indicates that the learned dynamics converge to a close approximation of the true dynamics. We can also
see that the IFT-CG approach closely follows the performance of the naive implementation, and they show the
same learning performance as the analytic gradient.
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(a) Model Loss.
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(b) Imitation Loss.

Figure 4: Average and standard deviation over five different initializations. The imitation loss mea-
sures the difference between the expert and learner control values u. The model loss is computed as
the L2-distance, ||A− Â||2, between the target expert matrix A and the learner matrix Â.

D Architectures

D.1 Backward Euler NODE

Van der Pol. We use a single neural network with two hidden layers.

variable 1× 2

FC-500 + tanh

FC

variable 1× 2

Figure 5: Neural ODE architecture for VDP.

Spiral. We use a single neural network with two hidden layers.

variable 1× 2

FC-50 + tanh

FC

variable 1× 2

Figure 6: Neural ODE architecture for VDP.
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CMU Walking. We use a similar architecture as Yildiz et al. [2019].

first three
frames 1× 150

FC-30 + tanh

FC-30 + tanh

FC

latent
variable 1× 6

latent
variable 1× 6

FC-30 + tanh

FC-30 + tanh

FC

latent
variable 1× 6

latent
variable 1× 6

FC-30 + tanh

FC-30 + tanh

FC

reconstruction 1× 50

Figure 7: Encoder-NODE-Decoder neural architectures for CMU.

D.2 Differentiable MPC

Dynamics network architecture is shared across MPCIFT and behavioural cloning. Admissable control was in
the range [−1, 1].

state 1× 5
control 1× 1

FC-64 + tanh

FC-64 + tanh

FC

state 1× 5

(a) Dynamics function.

state 1× 3
{x, sin(θ), cos (θ)}

MSE( state, target)

cost 1× 1

(b) Cost function.

Figure 8: Architectures used for MPCIFT.

state 1× 5
control 1× 1

FC-64 + tanh

FC-64 + tanh

FC

state 1× 5

(a) Dynamics function.

state 1× 5

FC-64 + tanh

FC-64 + tanh

FC+ tanh

control 1× 1

(b) Policy.

Figure 9: Architectures used for behavioural cloning.
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