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Abstract

Incompressible fluid flow around a cylinder is one of the classical problems in fluid-
dynamics with strong relevance with many real-world engineering problems, for
example, design of offshore structures or design of a pin-fin heat exchanger. Thus
learning a high-accuracy surrogate for this problem can demonstrate the efficacy of
a novel machine learning approach. In this work, we propose a physics-informed
neural network (PINN) architecture for learning the relationship between simulation
output and the underlying geometry and boundary conditions. In addition to
using a physics-based regularization term, the proposed approach also exploits
the underlying physics to learn a set of Fourier features, i.e. frequency and phase
offset parameters, and then use them for predicting flow velocity and pressure
over the spatio-temporal domain. We demonstrate this approach by predicting
simulation results over out of range time interval and for novel design conditions.
Our results show that incorporation of Fourier features improves the generalization
performance over both temporal domain and design space.

1 Introduction

The current approach for designing complex devices and systems, such as aero-dynamic surfaces
and turbine components, typically involves an iterative interaction between design/operating space
exploration and evaluation. However, high-fidelity fluid-dynamics simulations, which are necessary
to evaluate the performance of design candidates under a variety of operating conditions, demand
significant time and computational power. This limits the scope of the overall design optimization
process and as a consequence, may lead to sub-optimal design choices. Applying machine learning
algorithms to develop a fast and accurate surrogate for predicting simulation outcomes has the
potential to significantly accelerate design evaluations thereby generating improved design choices.
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In recent years, deep neural networks and representation learning [9] have improved significantly in
accuracy and is widely-used in many application domains, such as image recognition [11], sequential
decision making [26], and language comprehension [6]. These approaches, especially supervised
learning, leverage datasets of inputs (e.g. pictures of people, historical data of a region’s average
weather data, etc.) and outputs (e.g. identity of the individuals in a picture, and weather forecast,
respectively) to learn their functional relationship using backpropagation. As inference in a neural
network involves a single forward pass this provides an excellent opportunity to learn good-quality,
low-cost surrogates for exploring the design spaces associated with fluid-dynamics problems.

To enable generalization beyond the training set, learning approaches incorporate appropriate induc-
tive bias [5, 10] and promote representations which are more plausible in some sense. It typically
manifests itself via a set of assumptions, which in turn can guide a learning algorithm to pick one hy-
pothesis over another. The success in predicting an outcome for previously unseen data then depends
on how well the inductive bias captures the ground reality. Inductive bias can be introduced as a prior
in a Bayesian model, or via the choice of computational graphs and regularization terms in a neural
network. In problems wherein laws of physics have a strong influence on the input-output relationship,
generalization can be improved by leveraging underlying physics for defining the regularization term.

In this work, we incorporate a physics-based regularization term si that a learned surrogate conforms
to the underlying physics governed by Navier-Stokes equations. We develop a PINN framework
to infer how the velocity and pressure fields associated with the flow of an incompressible fluid
around a cylinder depend on the underlying geometry and boundary condition - in particular, the
size of the cylinder and inlet velocity, respectively. In addition, to capture the periodic nature of
the solution which is governed by the Strouhal number [2], the proposed approach learns a set of
Fourier features and a phase offset parameter as functions of the underlying geometry and boundary
conditions. After the PINN has been trained, simulation results, i.e. velocity and pressure fields, for
new design choices can be inferred in a fast, computationally inexpensive way. Thus, by enabling
high-throughput evaluation of potential design candidates, this proposed approach provides a means
to achieve better, more efficient design solutions. The key contributions of this work are as follows:

• We introduce a Fourier Feature Mapping (FFM) subnetwork within a PINN framework to yield
better predictions about fluid flow around a cylinder. The FFM subnetwork learns frequency and
phase offset parameters as a function of cylinder shape and inlet velocity.

• Subsequently, we use the learned surrogate to predict simulation outputs for novel design condi-
tions and demonstrate the improvement in its generalization performance.

Related Work

ML-based Approaches for Fluid-dynamics Simulations: Use of machine learning algorithms
in fluid-dynamics problems has drawn significant attention over the last few years. [12, 32] have
shown that supervised learning, using large datasets of simulation results obtained from finite-element
or finite-volume solvers, can build surrogates for predicting predict simulation results with high
accuracy. [14, 20, 24, 31] have demonstrated that ML-based approaches can predict simulation
results in mesh-free manner and incorporation of physics-based regularization in these formulations
improves the quality of results by a significant margin. In addition, supervised learning has also been
used to guide the discretization process in a data-driven way [3] or to learn efficient iterative solvers
[13]. On the other hand, alternative approaches [7, 17, 19] based on self-supervised learning have also
been proposed; they employ a neural network to approximate the solution of a differential equation
and then use automatic differentiation to compute the loss function which is a quantitative measure
on how well the dynamics (represented via a differential equation) and the initial/boundary conditions
are enforced. As these approaches use the physics itself to generate training data, this line of of work
completely avoids the computationally expensive process for generating simulation datasets. It has
also been shown that such neural network based approximations for a class of quasilinear, parabolic
partial differential equations can converge to their true solutions with arbitrary accuracy [27].

Frequency Bias in Neural Networks: Frequency bias in neural networks is a relatively well-
studied problem, with a body of work focusing on the relationship between frequency components
present in a function and the speed at which neural networks learn them. [22] has demonstrated that
neural networks with ReLU activation favors functions with low frequency components. [8, 18] have
shown that deeper architectures are needed for a neural network to learn high-frequency functions.
[4, 25] analyzed the learning dynamics in gradient descent and have shown that neural networks
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learn low frequency functions much faster than high frequency functions. On the other hand, since
the seminal work by Rahimi and Recht [23], multiple work have focused on accelerating learning
algorithms by mapping the input to an appropriate feature space. A recent work [30] has shown that
by using Fourier features as inputs to a multi-layer perceptron (MLP) can improve its capability to
learn high frequency functions. Another work [28] has shown that use of periodic activation functions
(e.g., sin) can provide an efficient tool to learn representations in a large class of problems.

2 Frequency-compensated PINN for Fluid-dynamics Problems

2.1 Navier-Stokes Equations

In this work, we consider a classical fluid-dynamicss problem, namely a cylinder in the cross flow [2].
In this flow configuration, an incompressible fluid passes around a cylinder. Then, by letting u, v
denote the horizontal and vertical components of the velocity field and p denote the pressure field,
the dynamics can be expressed as:

∂u
∂t + u∂u

∂x + v ∂u
∂y + ∂p

∂x − ν
(

∂2u
∂x2 + ∂2u

∂y2

)
= 0

∂v
∂t + u ∂v

∂x + v ∂v
∂y + ∂p

∂y − ν
(

∂2v
∂x2 + ∂2v

∂y2

)
= 0

∂u
∂x + ∂v

∂y = 0

 Ψ(u, v, p) = 0, (1)

where ν denotes the kinematic viscosity of the fluid under consideration and the functional Ψ
describes the underlying partial differential equation. Moreover, by letting dy and uinlet denote the
cylinder’s diameter and inlet velocity, respectively, the Reynolds number for this flow can expressed
as Re = (uinlet ∗ dy)/ν. As we assume the kinematic viscosity to be 0.001, the vortex shedding
frequency can be approximated as 0.21 ∗ (1− 21/Re) ∗ (uinlet/dy) for the range of inlet velocity
and cylinder diameter considered in this work [29].

2.2 PINN Architecture and the Fourier Component

Figure 1 illustrates the PINN architecture that we propose to learn a surrogate for the aforementioned
problem. The input to the network are as follows: the spatial coordinates inside the domain (x, y),
the temporal dimension (t), the inlet velocity (uinlet) and the diameter of the cylinder (dy); and the
PINN predicts the velocity (u, v) and pressure (p) of the flow.

x

y

t

uinlet

dy

u

v

p

PDE

u dy

Fourier
Component

Lprediction

LPDE

Figure 1: A diagram demonstrating the proposed framework. Arrows with dotted lines denote the data flow
with regard to Fourier Feature Mapping.

As mentioned in the previous subsection, the velocity and pressure exhibit a periodic behavior along
the temporal dimension. To capture this aspect, we use a set of Fourier features defined as

Fourier Component = [sin(Ft+ φ), cos(Ft+ φ)], (2)

and employ an MLP to learn the frequency (F ) and phase shift (φ) in the Fourier component as a
function of uinlet and dy. These features are then fed into a second MLP subnetwork, along with
the spatio-temporal coordinates (x, y, t) and design specifications (uinlet, dy). The output from this
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second subnetwork yield predictions on flow velocity and pressure. By letting û, v̂ and p̂ denote the
predicted velocity and pressure, respectively, we define the prediction error as:

Lprediction =
1

n

n∑
i=1

[(ui − ûi)2 + (vi − v̂i)2 + (pi − p̂i)2], (3)

where n is the training dataset size. In addition, to enforce that the predicted values conform to the
underlying physics governed by (1), we use the following regularization term

LPDE =
1

n

n∑
i=1

‖Ψ(ui, vi, pi)‖2. (4)

Finally we define the following loss function for the PINN

L = Lpredition + λLPDE , (5)

where the hyper-parameter λ maintains a balance between prediction accuracy and regularization.

3 Experiment

To evaluate performance of our proposed PINN framework, we train the network using simulation
data corresponding to a handful of predefined geometry (dy) and inlet velocity (uinlet) combinations
and use it to predict outputs for other combinations of geometry and inlet velocity values.

3.1 Dataset

We use FeniCS [1, 16], a finite-element solver, to create a dataset for the flow around a cylinder
problem, as illustrated in Figure 2. We have a rectangular channel with length L = 1.8 and width
W = 0.4, and an elliptical cylinder with fixed horizontal diameter dx = 0.1 and vertical diameter

uinlet

dy

Xsample

Ysample

L

W

offset

dx

Figure 2: Geometry of the flow configuration. The pink area highlights the region
of interest which is aligned in the vertical middle and is located in the right of the
cylinder after an offset of 0.1 from its center.

dy is placed inside the
channel. The cylinder
is placed at the verti-
cal middle point and
0.2 from the inlet on
the left. The region
of interest is a rectan-
gular region of length
Xsample = 1.5 and
width Ysample = 0.3.
We run FEniCS simu-
lation for the time in-
terval [0s, 6s] (with a
time resolution 0.05s), and then sample the velocity and pressure data for this region of interest. In
this work, we train and evaluate the PINN predict the output within this region of interest (shown in
pink in Figure 2).

In this work, we assume uinlet ∈ [0.8, 1.0] and dy ∈ [0.08, 0.11] and form the training set by
running FEniCS simulation for the following 9 combinations (0.8, 0.08), (0.8, 0.09), (0.8, 0.10),
(0.9, 0.08), (0.9, 0.10), (0.9, 0.11), (1.0, 0.08), (1.0, 0.09), and (1.0, 0.11) and then only taking the
points from the time interval [0s, 5s] with the interval of 0.1s. Also, we keep the result for the
following combinations of uinlet and dy as the validation set - (0.9, 0.09) and (0.9, 0.10); although
the combination (0.9, 0.10) appears in the both these sets they they do not overlap in the time direction.
The rest of the points constitute the test set. With this, we have a dataset with training set of 517, 350
instances, validation set of 206, 700 instances and test set of 827, 520 instances2. If a geometry
setting (i.e. a particular combination of uinlet and dy) appears in training set, we name it “Seen”,
otherwise “Unseen”.

2For further details such as data point distribution among the geometry settings, please read the supplementary
materials
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3.2 Parameters and Settings

For the Fourier Feature Mapping (FFM) subnetwork, we use 3 fully-connected (FC) layers with 120
neurons on each layer and use Tanh activation function after the dropout layer. The final output size
of the subnetwork is set as 10, and the first 5 outputs serve as frequency F in the Fourier component
(2) while the rest 5 serve as phase shift φ.

For the second MLP subnetwork, we set up a network consisting of 10 FC layers with 120 neurons
on each layer. The activation function for each FC layer is also chosen as Tanh.

In each step, besides the minibatches from the training set, we also randomly sample points from
the recatangular region and we calculate the PDE loss (4) for those randomly sampled points so
that the learned surrogate conforms to (1). The partial deriverative equations are implemented using
autograd toolbox from PyTorch [21]. The random points are drawn in the following domains:
x ∈ [0, 1.5], y ∈ [0, 0.3], t ∈ [0, 5], uinlet ∈ [0.8, 1] and dy ∈ [0.08, 0.11].

We use Adam Optimizer [15] to train the whole neural network with a learning rate of 0.001. The
default run is 20, 000 epoches with the minibatch size of 32768, and we adopt early-stopping strategy
if the validation loss does not reduce.

3.3 Results

We show the errors and illustrate visualization output from our proposed framework given different
geometry and component settings. Table 1 includes the MSE loss values at all the geometry and
component settings which will be analyzed through the whole subsection.

Seen/Covered Unseen/Covered Seen/Uncovered Unseen/Uncovered

Full Component 1.09×10−4 0.0269 0.0727 0.112
No-FFM 1.73× 10−4 0.347 0.0973 0.163

Strong-Reg 8.47× 10−4 0.0589 0.0453 0.0986
No-Reg/Overfit 2.51× 10−3 0.0431 0.0649 0.126

Table 1: Mean square error values of the testing sets and different experiment settings which will
be discussed through Section 3.3. “Seen/Unseen” denotes whether the geometry settings appear in
the training set (the data points in training and test set never overlap), “Covered/Uncovered” denotes
whether the data is drawn from t ∈ [0, 5] span.

3.3.1 Prediction within training geometry settings (Seen)

Figure 3a demonstrates the “worst” prediction output (the one possessing the highest MSE among
the instances) of our proposed framework when using the geometry in the training set (t = 4.65,
uinlet = 1.0 and d = 0.11). It is clear that, within the training geometry settings, our proposed PINN
framework provides accurate prediction on the inputs that do not appear at the training time stamps.
The errors are barely noticeable on the visualization result and there is almost no phase shift.

3.3.2 Prediction outside training geometry settings (Unseen)

Figure 3b demonstrates the performance with the geometry settings that is unseen in the training set.
We select the best (lowest MSE) prediction results and demonstrate it in Figure 3b. We can conclude
that our framework generally works well in terms of recovering the data distribution in the sample
space – or in terms of visualization, the shapes and artifacts in the images.

3.3.3 Ablation Settings, Challenges and Discussion

Beyond Time Span: In Table 1, we notice that points within time span t ∈ [5, 6] (denoted as
“Uncovered”) have lower performance or higher loss values. This is a major challenge in the proposed
framework due to lack of further guidance in the training set and training process – no sampled
points are drawn from time span t ∈ [5, 6], However, as we illustrate the in Figure 4a, our proposed
framework can still predict the flow velocity and pressure, albeit with some small phase shift.
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(a) Full Component, data sampled at t = 4.65 with uinlet = 1.0 and dy = 0.11

(b) Full Component, data sampled at t = 3.95 with uinlet = 0.8 and dy = 0.11

Figure 3: Visualization output as discussed in Section 3.3.1 and 3.3.2. In the same figure, the first row
is the ground truth, the second row is the prediction and the third row is the error, other visualization
figures have the same layout.

(a) Prediction beyond time span, data sampled at t =
5.15 with uinlet = 0.8 and dy = 0.11

(b) No-FFM, data sampled at t = 3.95 with uinlet =
0.8 and dy = 0.11

(c) Strong-Reg, data sampled at t = 1.75 with uinlet =
1.0 and dy = 0.1.

(d) No-Reg/Overfit, data sampled at t = 4.75 with
uinlet = 1 and dy = 0.11

Figure 4: Visualization results which are discussed in Section 3.3.3
.

Fourier Feature Mapping: Figure 4b demonstrate the visualization of a framework that removes
the FFM component – i.e., x, y, t uinlet and d were directly fed into the second MLP. We use the same
geometry setting and time stamp as the one in Figure 3b. From the output, we can conclude that, FFM
provide crucial frequency and phase shift information in the output; and without it, the framework is
not able to handle the complex frequencies and phase shifts among different combination of geometry
settings.

Weighted Loss: In most of the experiments, the loss weight parameter λ was set as 0.001, and
Figure 4c shows that a higher weighted PDE loss would inhibit the vorticity in the unseen settings. If
we set λ = 0, meaning that we do not introduce PDE regularization in the framework, we encounter
over fitting as demonstrated in Figure 4d.

Potential to Replace FeniCS-like Simulator: When we conduct FeniCS simulation on one geom-
etry setting, with a time step of 0.0001 on a machine equipped with two Intel Xeon CPU E5-2620 v4
CPUs and 4 Nvidia Titan Xp, we spend more than 24, 000 seconds in simulating data over the time
interval [0s, 6s]. With our proposed framework, we only need 50 time steps as anchor points from
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FeniCS, and within 15, 000 seconds (even we do not use early-stopping) we are able to acquire the
same amount of data with comparable quality.

4 Conclusion

In this paper, we proposed a frequency-compensated PINN framework which can build high-accuracy
surrogate for predicting simulation result in fluid dynamics design problems. In particular, we
introduced and leveraged a Fourier feature mapping subnetwork to capture the periodicity present
in the flow velocity and pressure; to conform with the underlying physics governed by the Strouhal
number, this subnetwork learns the Fourier components as a functions of inlet velocity and cylinder
size. Our results show that these Fourier features improve generalization in spatial and temporal
domain as well for novel geometry settings. Future work would explore how this framework can be
further extended to address fluid dynamics problems with more complex geometry and boundary
conditions.
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A Data Distribution

Table 2 demonstrates the distribution of the training, validation and test set. If a geometry setting appears in
training set, we name it “Seen”, otherwise “Unseen”.
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{uinlet, dy} Train Validation Test

{0.8, 0.08} 57, 700 / 69, 240
{0.8, 0.09} 57, 500 / 69, 000
{0.8, 0.10} 57, 400 / 68, 880
{0.8, 0.11} / / 137, 760
{0.9, 0.08} 57, 700 / 69, 240
{0.9, 0.09} / 138, 000 /
{0.9, 0.10} 57, 250 68, 700 /
{0.9, 0.11} 57, 400 / 68, 880
{1.0, 0.08} 57, 500 / 69, 240
{1.0, 0.09} 57, 400 / 69, 000
{1.0, 0.10} / / 137, 400
{1.0, 0.11} 57, 500 / 68, 880

Sum 517, 350 206, 700 827, 520

Table 2: Statistics and split of training, validation and test sets. Due to internal mechanics of FeniCS,
such as mesh grid settings, there are slight differences in the numbers of data points among different
geometry settings.
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