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Abstract

Two-dimensional nanomaterials, such as graphene, have been extensively studied
because of their outstanding physical properties. Structure and geometry optimiza-
tion of nanopores on such materials is beneficial for their performance in real-world
engineering applications such as water desalination. However, the optimization
process often involves very large numbers of experiments or simulations which
are expensive and time-consuming. In this work, we propose a graphene nanopore
optimization framework via the combination of deep reinforcement learning (DRL)
and convolutional neural network (CNN) for efficient water desalination. The DRL
agent controls the geometry of nanopore, while the CNN is employed to predict
the water flux and ion rejection of the nanoporous graphene membrane at a certain
external pressure. With the CNN-accelerated property prediction, our DRL agent
can optimize the nanoporous graphene efficiently in an online manner. Experiments
show that our framework can design nanopore structures that are promising in
energy-efficient water desalination.

1 Introduction

Single-layer graphene, as an iconic two-dimensional (2D) material, has drawn much scientific
attention in recent decades. Because of its ultrathin thickness and outstanding mechanical properties,
graphene with artificial pores has been demonstrated to have great potentials in many engineering
applications such as effective hydrogen gas separator [1, 2, 3], next-generation material for energy
storage or building supercapacitor [4, 5], and high-resolution DNA sequencing [6, 7, 8]. Given the
potential imminent global water scarcity crisis, another important application with graphene and other
2D materials is energy-efficient water desalination [9, 10, 11, 12]. Equipping nanoporous 2D material
membranes, reverse osmosis water desalination process can expect 2-3 orders improvement in water
flux compared with traditional polymeric membranes [10, 11, 12, 13]. The pore geometry plays a
determinant role in the performance of nanoporous 2D materials for water desalination [9, 11]. A
large pore that allows high water flux may perform poorly in rejecting ions; a small pore that rejects
100% unwanted ions, on the other hand, may have limited water flux. Thus, an optimal nanopore for
water desalination should be able to allow as much water flux as possible while maintaining a high
ion rejection rate. However, finding the optimal nanopore geometry on graphene can be challenging
due to high computational and experimental cost associated with extensive experiments. To maximize
the performances of the nanoporous graphene membrane in the water desalination process, a fast and
inexpensive nanopore optimization method with accelerated nanopore water desalination performance
predictor (performance predictor in short) is in need. Inspired by the recent rapid development of
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deep learning [14] algorithms, we combined the state-of-art deep reinforcement learning (DRL)
algorithm with convolutional neural network (CNN) to solve this challenge.

The core concept of reinforcement learning (RL) [15] is to train an agent that actively interacts
with the environment to achieve a goal. Recently, DRL [16, 17], which models the RL agent with
artificial neural networks, has proven to be an efficient tool in material-related engineering fields,
such as material design [18, 19, 20] and molecule optimization [21]. In this work, we designed and
implemented an artificial intelligence framework consisting of DRL, which is capable of designing
the nanopore on a single-layer graphene sheet to reach optimal water desalination performance. By
a series of decisions on whether or not to remove carbon atoms and which atom to remove, the
DRL agent can eventually create a pore that allows the highest water flux while maintaining an
acceptable ion rejection rate threshold. During the training process, the DRL agent’s decision-making
evolves based on the feedback given by the water desalination performance predictor about the
agent’s action. In our case, the feedback is the resulting water desalination performance (e.g., water
flux and ion rejection rate) of the pore generated by the DRL agent. Currently, the conventional
way to obtain the water flux and ion rejection of a porous graphene membrane is through molecular
dymamics (MD) simulations. However, 10 ns of MD simulation can take up to several days to run,
thus rendering the feedback process too time-consuming for DRL to be practical. To overcome the
limitation of the conventional MD simulation method, we trained a CNN [22, 23, 24, 25] model to
directly predict water desalination performance from a porous graphene membrane structure. With
the CNN-accelerated performance estimation process, the DRL model can rapidly optimize graphene
nanopore for water desalination.

2 Method

Figure 1: Overview of CNN accelerated DRL nanopore design model. At each timestep, the
nanoporous graphene structure is transformed into an geometrical features, which is fed into a
performance prediction network to estimate water flux and ion rejection rate. The reward is then
calculated based on the predicted water flux and ion rejection. Also, the geometrical features extracted
from the performance predictor is concatenated with the fingerprint and atom coordinates for the
current state. Given the current graphene structure, candidate atoms are picked which locate at the
edge of the nanopore. The RL agent constructed upon Deep Q-network takes as input the reward,
candidate atoms, and state to determine the next atom to remove from the graphene.

The graphene nanopore optimization framework for water desalination consists of a DRL agent
incorporated with a CNN-based water desalination performance predictor (Fig. 1). Whenever the
DRL generates a new nanopore, the performance predictor can rapidly evaluate the water flux/ion
rejection rate of the nanopore, such that the DRL agent can get instantaneous feedback on its action.
Provided the featurized information of the nanoporous graphene sheet (Morgan fingerprint, Cartesian
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coordinates of each atom, and geometry of graphene membrane) and predicted water flux and ion
rejection by the performance predictor, DRL agent was trained to create a pore on graphene sheet
with the goal to maximize its performance in the water desalination process.

2.1 Water Desalination Performance Predictor

To facilitate the reward estimation of DRL, a CNN model was trained to make an instantaneous
prediction of water flux and ion rejection rate of a specific nanoporous graphene membrane. There
were 2 steps in the CNN modeling, including extracting features from the geometry of graphene
nanoporous membrane and making predictions through a fully-connected multi-layer perceptron
(MLP) regression model (Fig.1). First of all, the geometrical features of a graphene nanoporous
membrane is extracted to a 380 × 380 pixels image. Color was applied on top of each atom, and all
geometrical features were resized to the dimension of 224 × 224 pixels. The processed geometrical
features was then fed into a CNN for feature extraction. Multiple CNN models, including ResNet18,
ResNet50 [25], and VGG16 [24] with batch normalization were implemented to extract feature
vectors from the input image. Finally, a MLP was built on top of the CNN to make the prediction.
We trained two models for water flux and ion rejection prediction separately.

The dataset used for CNN training is generated by MD simulation. The MD simulation system
of water desalination using graphene is identical to previously published works [11, 13]. There
were 185 different graphene nanopores simulated. To enlarge the dataset for CNN training, we
conducted data augmentation by translating or flipping the pore on the membrane. The dataset after
data augmentation consisted of 3937 samples. During training, we used gradient-based Adam [26]
optimizer with the learning rate 0.0001 for pretrained convolutional layers and 0.001 for the MLPs.
For benchmarking the prediction performance of each model, the whole dataset was split into a
training set and a test set in the ratio of 4:1. All models were trained only on the training set and
tested based on the unseen test set. Raw values of water flux and ion rejection rate were standardized
before fed into prediction models for training. CNN models were trained for 600 epochs. The model
with the best performance was selected to be retrained on the whole dataset and utilized in the DRL
framework.

2.2 DRL Nanopore Design Agent

Our goal was to design the geometry of graphene nanopore for energy-efficient water desalination,
which simultaneously demanded high flux and high ion rejection under certain external pressure.
In order to design the nanopore, an agent was expected to remove atoms sequentially till a desired
pore geometry is developed. To this end, the agent was set to interact with nanoporous graphene in a
sequence of actions at, states st, and rewards rt within an episode of length T . The goal of the agent
was to select the action such that it could maximize the future discounted return Rt =

∑T
t=1 γ

t−1rt
in the finite Markov decision process (MDP) setting. In our case, we set the discount factor γ to be 1.

At timestep t, given the nanoporous grapheneGt, the agent observed the state st, which was composed
of Morgan fingerprint [27], coordinates of all the atoms, along with graphene geometrical features.
The colored graphene g′t was fed into the flux and ion rejection predictor respectively. The fully
connected layer before the output was extracted and concatenated as the geometrical feature. Once an
atom is removed, its coordinate is set to the origin since a homogeneous input dimension is required
for MLP. The predicted flux ft and ion rejection it were leveraged to compute the reward signal rt
for the agent, as given in Eq. 1 and Eq. 2:

σ(x) = A+
K −A

(C +Qe−Bx)
1
ν

, (1)

rt = αft + σ(it)− σ(1), (2)

where σ(·) was the generalized logistic function [28] and α was the coefficient for flux term. In
our setting, α was set to be 0.01, and A = −15, K = 0, B = 13, Q = 100, ν = 0.01, C = 1
for the logistic function. A linear term of flux reward encouraged the agent to generate nanopores,
which allowed high water flux. Since low ion rejection rate was not favored in water desalination, a
generalized logistic function σ(·) was leveraged to penalize ion rejection term. When it was high,
σ(it) was close to zero, which allowed the growth of the nanopores. However, when it was low, σ(it)
fiercely penalized the agent by outputing a large negative value. Besides, an extra 0.05 reward was
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given to the agent when it chose to remove an atom at timestep t to encourage pore growth at an early
stage. Given state st and reward rt, the agent intended to choose the action at for next step. However,
due to the high dimensionality of possible action space (all the atoms in the graphene fragment), it
was computationally expensive for the agent to efficiently and thoroughly explore the possible actions
and to learn an optimal design. Therefore, only a subset of M atoms was selected as candidates ct.
Atoms on the edge of pore were picked based on proximity to the pore center, if the number exceeds
M , only the first M atoms closest to the center of pore were selected. However, when the number of
edge atoms was less than M , non-edge atoms closest to the center of pore were selected as possible
candidates to maintain the size of ct. Given the state st, reward rt, and candidate ct, the agent learned
to pick the action aiming to maximize future rewards.

To train the agent, deep Q-learning [17] with experience replay was implemented. To model the
Q function, the Q-network parameterized by θ and target network parameterized by θ′, two fully
connected networks with the identical architecture were built. During training, only the parameters θ
in the Q-network was updated through backpropagation from loss function. Whereas the parameters
θ′ in the target network were updated with θ every 10 steps and are kept fixed otherwise. The input to
the network was the pair of graphene state and action candidates, (s, c), and the output was the Q
values of all the actions in the candidate. Besides, the agent’s experience (s, c, r, s′) in the episodes
were stored to a replay buffer D [17], such that the experience can be leveraged to update the network
parameters multiple times. The loss function (Eq. 3) measured the difference between the target Q
value Q∗(s′, c′; θ′i) and the prediction of current Q network Q(s, c; θi):

Li(θi) = E(s,c,r,s′)∼U(D)

[(
r + γmax

a′
Q(s′, c′; θ′i)−Q(s, c; θi)

)2]
. (3)

In our setting, we use Adam optimizer [26] with learning rate 0.001. The relay buffer is of capacity
10000 and batch size is set to 128.

3 Results

The mean squared error (MSE) and coefficient of determination (R2) are used as metrics to evaluate
the performances of models. The water flux and ion rejection labels are standardized before fed into
the property prediction models, thus the metrics tabulated are based on standardized water flux or
ion rejection rate. ResNet [25] significantly outperformed other models on both metrics (Table 1),
and the fined-tuned ResNet50 model reaches the highest accuracy in predicting both water flux and
ion rejection rate. Since the accuracy of performance predictor directly influence how accurately the
DRL agent is rewarded/penalized during training, ResNet50 is used to predict the water desalination
performance of various nanoporous graphenes to accelerate the DRL training.

Table 1: Performance of different models for graphene property prediction.
Model Flux MSE Flux R2 Ion rejection MSE Ion rejection R2

VGG16 [24] 0.0448 0.957 0.0156 0.985
ResNet18 [25] 0.0024 0.998 0.0039 0.996
ResNet50 [25] 0.0022 0.998 0.0038 0.996

We trained the DRL agent with 10 random seeds to generate various graphene nanopores. In the DRL
agent training processes with different random seeds (Fig.2), the red curves indicate mean values
and the blue shadows represent one standard deviation. The accumulated reward for each episode
increases during training the DRL agent (Fig. 2a). Initially the policy is noisy and the accumulated
rewards are low, because the DRL agent has not yet learned to stop expanding the pore before
receiving enormous penalty for low ion rejection rate. During the training, the DRL agent gradually
learns a stable policy through maximizing the rewards (balancing the tradeoff between water flux
and ion rejection rate). DRL agent performances after 2000 episodes of training are demonstrated
in Fig. 2(b)-(e). The DRL agent generates nanopore which gives positive reward at each timestep,
and the agent also automatically learns to stop enlarging the nanopore to avoid low ion rejection rate
(Fig. 2b and 2c). For example, the evolution of a DRL generated pore (Fig. 2f) shows that DRL
stops removing atom from the edge of graphene nanopore after 50th timestep, because it determines
that higher water flux reward brought by further removing atoms is not worth the penalty for low
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Figure 2: Training results for 10 DRL agents. (a) Summation of reward in each timestep vs. episode,
where the red line is the running average of the reward with window size 21 and the blue shadow
represents the standard deviation. (b) Summation of reward in each timestep vs. timestep. (c) Number
of removed atoms vs. timestep. (d) Predicted water flux vs. timestep. (e) Predicted ion rejection vs.
timestep. Fig. 2(b)-(e) show the results of DRL agents after trained for 2000 episodes, where the red
line indicates the mean and the blue shadow is the standard deviation. (f) Evolution of a graphene
nanopore designed by DRL agent.

ion rejection rate. Based on the prediction of our fine-tuned ResNet50, the averaged DRL generated
nanoporus graphenes possess water flux of ∼40 #/ns and ion rejection ∼96% (Fig. 2d and 2e).

The collection of both DRL generated nanoporous graphene membranes (7999 samples) and mem-
branes in the training dataset (3937 samples) is visualized using T-SNE[29] algorithm (Fig. 3a and
3b). T-SNE is a dimensionality reduction tool that is capable of mapping high-dimensional data to
lower-dimension form while preserving the similarities between data points. In other words, samples
that are more similar to each other will have a higher tendency of being clustered. In this work, using
CNN extracted features from each graphene membrane, T-SNE successfully clustered samples with
similar water flux or ion rejection. This result indicates that features extracted from CNN models
have a strong correlation with the water flux and ion rejection rate.

The water desalination performances of all nanopores (DRL generated and training dataset) are
compared in Fig. 4a. It is worth noting that the process of generating 7999 nanopores using DRL and
predicting their water flux/ion rejection rate takes less than a single week; however, evaluating the
performance of the same amount of nanopores using MD simulation will take ∼33 years (average 36
hours on each sample, using one 56-core CPU node). Compared to training dataset nanopores with
same level of ion rejection rate, some nanopores discovered by DRL allow much higher water flux.
One common feature shared by those high-performance nanopores is the semi-oval geometry with
rough edges.

Further MD simulations are conducted with DRL generated membranes to evaluate how the DRL
helps in optimizing graphene nanopore for water desalination. The area of each selected graphene
nanopore is calculated, and its water desalination performance is compared with that of the circular
pore with the same area (Fig. 4b, 90% threshold of ion rejection rate is marked by a red dashed line).
Although DRL generated pores generally have lower water flux compared with circular pores with
the same area, they have much higher ion rejection rate. For example, when the pore area is 113Å

2
,

DRL generated nanopore maintained over 90% ion rejection rate while the circular pore rejects
only approximately 65% of ions even though allowing higher water flux. A pore with high water
flux but a very low ion rejection rate is not desirable in water desalination application. Moreover,
the comparison between 113Å

2
DRL generated nanopore with 88Å

2
circular pore shows that DRL
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Figure 3: (a) T-SNE[29] visualization of features extracted from water flux prediction CNN model.
(b) T-SNE[29] of features extracted from ion rejection rate prediction CNN model. Black colored are
DRL generated membranes and blue ones are from training dataset

(a) (b)

Figure 4: (a) Predicted water flux (ns−1), and ion rejection rate (%) of all graphene nanopores
(7999 DRL generated + 3937 in training dataset). Zoom-in window shows the geometries of high-
performance nanopores. (b) Comparison of water desalination performance (under 100 MPa pressure)
of circular and DRL generated graphene nanopores. Each data point is obtained by averaging the ion
rejection and water flux of 4 MD simulations. The error bars represent one standard deviation.

generated pore can reject more ions when achieving same water flux: they both have approximately
125 #/ns water flux while 113Å

2
DRL generated pore can reject approximately 7% more ions. The

comparison between simulation results proves that DRL tends to prioritize the ion rejection rate over
water flux, which makes it capable of maximizing the water flux of nanopores while maintaining a
valid ion rejection rate.

4 Conclusion

In this work, we propose a graphene nanopore optimization framework based on the DRL accelerated
by the learning-based material property predictor. In particular, we focus on the optimal design of
nanoporous graphene for water desalination. The DRL agent takes the current graphene structure
information and the candidate atoms as inputs to determine which atom to remove at each timestep.
If we use traditional MD simulation to give DRL agent feedbacks about how its actions affect the
water desalination performance of the graphene nanopore, the training process of the DRL agent
can be impractically time-consuming. Therefore, ResNet50, a widely used CNN model, is trained
on a nanoporous graphene dataset to instantly predict the water flux and ion rejection rate under
certain pressure. Such prediction by the CNN model enables the real-time interaction between the
DRL agent with the graphene nanopores, as well as the online optimization of the DRL agent. CNN
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accelerated DRL training significantly expedites the exploration of graphene nanopores and is capable
of designing graphene nanopore to maintain a high ion rejection rate while maximizing water flux.
Moreover, with only minor modification, this framework can be directly extended to many other
fields concerning nanopore design. With a well-trained machine learning property predictor, the DRL
can automatically learn to design the optimal material structure effectively and efficiently.
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