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Abstract

Reducing the carbon footprint in cement production is a pressing challenge faced
by the construction industry. In the past few years, the world annual cement
consumption is approximately at 4 billion tons, where each ton leads to 1-ton CO2

emissions. To curb the massive environmental impact, it is pertinent to improve
material performance and reduce carbon embodiment of cement. This requires
an in-depth understanding of how cement strength is controlled by its chemical
composition. Although this problem has been investigated for more than one
hundred years, our current knowledge is still deficient for a clear decomposition
of this complex composition-strength relationship. Here, we take advantage of
Gaussian process regression (GPR) to decipher the fundamental compositional
attributes (the cement "genome") to cement strength performance. Among all
machine learning methods applied to the same dataset, our GPR model achieves the
highest accuracy of predicting cement strength based on the chemical compounds.
Based on the optimized GPR model, we are able to decompose the influence of
each oxide on cement strength to an unprecedented level.

1 Introduction

Human life has been increasingly challenged by environmental problems associated with social
developments. Among all, global warming is undoubtedly one of the top issues constituting a profound
global impact. In this regard, massive CO2 emissions are directly attributed to the manufacturing of
engineering raw materials. Despite the extensive research attention, our current knowledge of many
fundamentals aspects of the engineering materials is still limited, which impedes proper material
design and optimization for attaining the low-carbon aim of sustainable engineering. The recent
advances in machine learning open up new possibilities to material research (1; 2; 3). Different
from the conventional ways to develop our cognition based on the accumulation of experience
and knowledge, machine learning is especially outstanding in establishing the correlation between
(seemingly) unrelated things. In particular, this data-driven nature of machine learning presents an
excellent fit for advancing our understanding of the composition-property correlation for various
engineering materials, as the correlation can be established without explicit knowledge of some
underlying physical and chemical mechanisms remaining unknown. Here, we showcase an effort of
using machine learning (Gaussian process regression) to advance our knowledge of the composition-
strength relationship of cement.

Cement represents a typical engineering material produced in the construction industry that involves
a strong carbon footprint. As a matter of fact, the world annual cement consumption is approximately
at 4 billion tons over the past few years and this number is expected to be continuously growing in
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the next decades (4), and producing each ton of cement results in about 1 ton of CO2 emitted into the
atmosphere (5). Currently, cement is often redundantly used in construction since the knowledge
of this material is still lacking to ensure more precise control of its engineering performance (e.g.,
strength). In terms of the chemical composition, an ordinary cement typically consists of 67% CaO,
22% SiO2, 5% Al2O3, 3% Fe2O3, with 3% other components (6). During cement hydration, all these
components make their contributions to the material strength overtimes. The real hydration process
in cement, however, involves complex and systematic interactions between its many components,
leaving it rather challenging to isolate the actual effect of a particular component (7; 8; 9). In
particular, with the incursion of a wide degree of variables in cement, the expected reactivity of
a specific phase may not be the same in cement as if it is measured independently. In addition,
accurate quantification of the physical-chemical reactions of some minor components in cement
maybe even impossible to achieve experimentally. Therefore, cement research provides a good
manifestation of the common difficulties faced by many studies in engineering materials, including
but not limited to nonlinear, non-additive, high-dimensional, time-dependent, and practical difficulties
of the experiments.

In recent years, the use of machine learning to predict material property has become an emerging
trend in the field of cement and concrete research (10; 11; 12; 13; 14; 15). However, little attention
has been paid to taking advantage of this approach for more in-depth interrogation of the intrinsic
composition-property relationship regarding the cement hydration. To address this problem, this
study aims to apply Gaussian process regression (GPR) to deconstruct the composition-strength
relationship of cement. Specifically, our goal is to decipher how the physical and chemical features
of a cement (i.e., the cement "genome") govern its strength development—in the same fashion as the
DNA of humans control many of their characteristics.

Here, GPR is adopted because it has several advantages for studying engineering materials over the
other prevailing machine learning methods. First, GPR model is a non-parametric learning algorithm
(16), meaning that predictability does not rely on strong assumptions of the form of the mapping
function. This greatly eases the exploration of the input-output relationship in material research,
as the exact relationship is often not available and/or may vary greatly from case to case. As such,
GPR has sufficient flexibility to fit completely unknown relationships without the concerns of the
constraint of the parametric models. Second, GPR allows leveraging the prior knowledge about the
input-output relationship into the model construction via the selection of computational kernels. For
many engineering material, certain prior knowledge is available. Thus, a specific set of basic kernels
can be combined to approximate the expectation. Third, the prediction made by GPR is essentially a
probabilistic distribution of the expected output. From a practical perspective, the statistical nature of
the GPR model prediction is of special significance for the rational design of engineering materials.

For the GPR model training, we adopt a dataset comprising of more than 2000 commercial cement
samples, where the input features are the contents of bulk oxide compositions, along with particle
fineness, and the output is the material strength after 28 days of hydration (i.e., the most accepted
strength metric of cement). Base on the optimized GPR model, we conducted feature impact and
feature effect analysis to investigate the influence of the individual input features to cement strength.
Remarkably, the work presented herein provides one of the first machine learning investigations to
explore the material-strength down to the fine level of individual oxides.

2 Related Works

Machine learning in cement and concrete research. Due to the initial stage of the investigations,
the primary focus of the recent studies has been placed on applying various learning techniques (e.g.,
multiple linear regression, regression network, support vector machine, and tree-based models) to
predict the macroscopic performance of cementitious materials such as strength (10; 11; 12; 13; 17)
and durability (14; 18; 19), while some other topics can be found in terms of mixture optimization
(20; 21) and image-based investigation (22; 23; 24). Thus far, limited effort has been paid to taking
advantage of this approach for more in-depth interrogation of the intrinsic composition-property
relationship regarding the cement hydration. The most relevant work to predicting the strength
behavior of cement is found in (13), where the authors compared several prevailing machine learning
models (e.g. KNN and several tree-based approaches) to predict the 28-day cement strength.
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3 Methodology

3.1 The cement dataset

Herein, the cement dataset used for the machine learning analysis is adopted from a previous study
(13). This dataset is established on an industry survey over a large number of U.S. cement testing
institutes, led by the Portland Cement Association (PCA) and the National Institute of Standards and
Technology (NIST), wherein all the cement samples were tested per varying ASTM standards. Based
on the raw data, a preliminary screening is carried out to remove some unreasonable samples (e.g.,
negative strength record, replication, missing key attributes, etc.) that are misinforming. The dataset
adopted herein comprises of 2060 cement samples, where each sample includes the information of ten
chemical compositions (CaO, SiO2, Al2O3, Fe2O3, SO3, MgO, LOI (loss on ignition), Free CaO,
K2O, and Na2O) and Blaine fineness of the cement particles as the input features, and the ASTM
C109 cement mortar strength at 28 days of hydration as the label (25). As an illustration, the direct
correlations between the two major inputs (CaO and SiO2) and the 28-day strength are given in
Fig. 1. It is apparent from these examples that their contributions to cement strength cannot capture
intuitively.

Figure 1: Direct correlations between individual features and the 28-day cement mortar strength of
all samples in the cement dataset, for (a) CaO, and (b) SiO2.

3.2 Pipeline of the machine learning analysis

For training each machine learning model, we use 90% cement samples in the raw dataset for the model
training and the remaining 10% samples for testing. This train-test split is carried out with stratification
sampling to ensure that the split subsets are representative of the distribution of 28-day strength in
the raw dataset (26). For optimizing the GPR model, we execute a five-fold cross-validation to tune
the model hyperparameters. With respect to the evaluation of models, we predominantly adapt to
the coefficient of determination (R2), with mean absolute percentage error (MAPE) as additional
references. More details are provided in Section 4.1.

After obtaining the final model for predicting cement strength, we carry out feature impact and feature
effect analyses to explore the composition-strength relationship based on the optimized model. The
feature impact analysis is done based on the permutation feature importance (27). Here, we repeat
the permutation for each feature by 100 times to ensure a statistically stable interpretation of the
feature impact. The feature effect analysis focuses on probing the effect of the individual features.
In particular, we define a single centroid composition based on the distribution of the individual
features, wherein each of its feature value equals to the median of the corresponding feature over
the whole dataset. The centroid composition has 3.01% SO3, 63.75% CaO, 4.64% Al2O3, 20.37%
SiO2, 3.25% Fe2O3, 2.10% MgO, 0.19% Na2O, 1.72% LOI, 0.87% Free CaO, 0.93% K2O, and 391
m2/kg for Blaine fineness). Next, the effect of the single feature of interest is interrogated by altering
its value within its maximum distance to the extremum (min or max, whichever is further from the
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median), while adjusting all the other features proportionally in correspondence such that the sum
of the features remains close to 100%. During this process, we use the trained models to predict the
strength at a fine interval of the feature jittering. As such, we can obtain a curve of each feature where
it shows how the mortar strength varies as a function of the investigated feature.

4 Results

4.1 Prediction accuracy of the optimized GPR model

To optimized the GPR model, we select the hyperparameters by following a three-step optimization:
(i) compare the model performance when using the individual candidate kernel(s), wherein the kernel
parameter is left as default, (ii) fine-tune the kernel parameters of the best candidate kernel, and (iii)
adjust the level of expected noise to prevent overfitting problem. For good reliability, the optimal
hyperparameters are selected based on an average of 10 repetitions. Here, we adopt a combination of
Linear+RBF kernels as the general composition-strength relationship is expected to be monotonic.
The R2 accuracy of this model on the test set is 0.59 ± 0.03. As a reference, a comparison between
the predicted versus true 28-day cement strength is displayed in Fig. 2. We note that the main cluster
aligns with the line of equality fairly reasonable, suggesting an accurate strength prediction for most
of the cement samples. To our knowledge, this model achieves the highest prediction accuracy among
all the machine learning methods that have been applied to this dataset, and the best R2 accuracy
reported previously is 0.51 (13).

Figure 2: Predicted vs. true 28-day strength of the cement dataset considered herein. The y = x
dashed line indicates perfect agreement.

4.2 Feature analyses on the 28-day cement strength

Now turning to the analyses of the different features on the cement strength of hydrated cement. Based
on the optimized GPR model, we first implement the permutation analysis to investigate the influence
of each input feature to the 28-day strength, as displayed in Fig. 3a, and then we implement the
feature effect analysis (see Section 3.2) to further check the exact effect of the individual features, as
displayed in Fig. 3b. In either analysis, a clear contrast is seen between some major features, namely,
Fineness, CaO, Al2O3, SiO2, and SO3. Furthermore, the slope of the feature effect curves in Fig.
3b is broadly consistent with the impact ranking Fig. 3a. Here, we first note that the overwhelming
role of the fineness of the cement powder. This echoes with the common expectations that the fineness
has a significant impact on cement strength, which has been long recognized in cement research
(28; 29; 30). Furthermore, it also makes sense to have SO3, Al2O3, CaO ranked high among all, as
these oxides are known to play an important role in the setting behavior of cement, as well as the
strength build-up (31; 32; 33).
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To this point, it is clear that the presented feature analyses provide us valuable information regarding
how the cement strength can be affected by the variation of its composition. Indeed, this is the first
time that such an interpretation is achieved by machine learning for cement research. These results
are extremely useful for the reverse design of the cement composition based on the practical need of
specific strength requirements, which, in turn, helps to improve the efficiency of raw material usages
and reduce the carbon footprint in the cement production.

Figure 3: Feature analyses for the 28-day cement strength: (a) feature impact analysis, and (b) feature
effect analysis. For (a), the individual features are normalized so that the impact values sum up
to 1. For (b), each line represents altering the value of one feature from the centroid composition
(see Section 3.2) while adjusting the other feature accordingly to ensure the total content remaining
unchanged.

5 Discussion

We find that the results yielded from the GPR model are rather interesting and encouraging—after all,
all the findings presented in this work are based on the sole inputs of the basic material attributes of
the cement instances in the dataset. Most of the findings offered by this learning analysis largely echo
with the existing understanding from the field of cement research (6). Admittedly, some points cannot
be fully explained by the GPR-based feature analyses. However, this machine learning analysis is
nevertheless agreed by the established studies in cement chemistry with respect to the major aspects
of the effect of the investigated features. To a certain extent, the challenge of the verification comes
from the fact that findings obtained by machine learning are not necessarily easily measurable using
experiments, especially for quantifying the feature effect.

Overall, our study shows that machine learning analysis, when properly conducted, can be a powerful
technique for understating the composition-property relationship of engineering materials. In partic-
ular, this study demonstrates that machine learning can be exclusively useful for disentangling the
relationship between different coupled components in the material that are hard to be investigated
independently. Furthermore, machine learning can significantly facilitate the quantitative comparison
of feature effects to the material property of interest. While the goal of many current machine
learning-related studies in this field stays on improving the prediction accuracy of the model (which
is fundamental to the success of this technique), this emerging approach can indeed offer many more
valuable insights for further clarifying the complex material-property relationships of materials, from
a novel data-driven perspective that may not be otherwise attained.

Broader Impact

We foresee several positive impacts of the presented work. So far, many traditional carbon-heavy
manufacturing industries have been awaiting breakthroughs in face of the increasing pressure from
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environmental problems. In this regard, machine learning has a clear advantage of mapping the
inputs (e.g. material attributes) to the output (e.g. engineering property), especially when the obscure
correlation cannot be captured by our current knowledge. As such, there is an urgent need of applying
the emerging machine learning techniques to augment the solutions for many pressing engineering
problems. Importantly, the presented work showcases a pioneering effort of leveraging artificial
intelligence (AI) to unveil new insights of the composition-property relationship of one of the most
important engineering materials. The presented archetypal pipeline can be transferred to advance
the understanding, design, and optimization of many other engineering materials. We envision that
such AI-informed approaches will induce a paradigm shift in the pathways of engineering material
research. Overall, the adoption of machine learning techniques in traditional engineering fields will
spur many chances to promote the green engineering concept and mandate of a circular economy.
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