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Abstract

Buildings produce more U.S. greenhouse gas emissions through electricity gen-
eration than any other economic sector [1]. To improve the energy efficiency of
buildings, engineers often rely on physics-based building simulations to predict
the impacts of retrofits in individual buildings. In dense urban areas, these models
suffer from inaccuracy due to imprecise parameterization or external, unmod-
eled urban context factors such as inter-building effects and urban microclimates
[2, 3, 4]. In a case study of approximately 30 buildings in Sacramento, California,
we demonstrate how our hybrid physics-driven deep learning framework can use
these external factors advantageously to identify a more optimal energy efficiency
retrofit installation strategy and achieve significant savings in both energy and cost.

1 Introduction

Urban areas dominate contributions to anthropogenic climate change, with cities accounting for over
75 percent of greenhouse gas emissions and two-thirds of global energy use [5]. A prime opportunity
to reduce urban greenhouse gas emissions is in the buildings sector, which is responsible for over
30 percent of greenhouse gases from energy generation [5]. When deployed strategically, building
energy retrofits are widely accepted as a cost-effective way to achieve energy savings in buildings [6].

Engineers often rely on physics-based simulation tools to understand building energy use and to
project possible energy savings under a variety of different retrofits. These methods tend to focus on
prediction tasks for individual buildings, requiring a separate model for each building, where the time
and resources required to produce each model makes it difficult to model an entire urban area that
municipal policymakers require to make decisions. Additionally, these models are often prone to
high prediction errors because of a large number of required modeling assumptions [7, 8]. However,
emerging sophisticated time series prediction models using supervised machine learning methods
have been applied to accurately predict energy consumption in buildings [9, 10, 11, 12, 13]. Fully
data-driven approaches to predicting impacts of energy retrofits are difficult to use in practice due to
the lack of ground truth labels from buildings with comparable retrofits. We draw inspiration from
the emergence of models that integrate physical simulations with deep learning [14]. Other work
[15, 16] has used a combination of physical simulations and machine learning to match buildings
with potentially effective retrofits, but these models do not consider the impacts of urban context (e.g.,
mutual shading and reflection, building-to-building heat transfer) on retrofit efficacy, which has been
previously shown to significantly influence building energy performance [17].
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Figure 1: From left to right, 2.5D geometry and other building parameters are used by EnergyPlus to
simulate energy consumption. This is the input to either the no context or with context model. The
model then predicts energy consumption for the target building (in this case, building B).

Here, we extend the hybrid data-driven urban energy simulation (DUE-S) model presented in [18] by
adapting it to time series prediction tasks and enabling quantification of potential retrofits. We use this
new model to predict urban context-aware energy usage estimates given static physical parameters
for each building in an urban area. We also isolate the effect of context to highlight its utility in
retrofit optimization. A key advantage of our approach is the automatic identification of buildings
that can, with strategic retrofitting, achieve a "multiplier effect" by improving energy savings in other
buildings via inter-building effects. Our contributions are twofold: the application of a hybrid deep
learning approach to 1) account for urban context to simultaneously predict retrofit installation effects
in multiple buildings and 2) derive a retrofit strategy that minimizes installation demands.

2 Methodology

2.1 Data

Ground truth labels for our baseline model training consist of hourly electricity consumption data for
2016-2018 from N = 29 buildings in Sacramento, California. Buildings range in size and purpose
(office, retail, warehouse, apartment). To avoid data leakage from random shuffling of sequential time
series data [19], we split the first two years into consecutive sequences of training and validation sets
with lengths in a ratio of 3:1 respectively. The last year (2018) is reserved for testing. For each ground
truth label, a corresponding simulated energy consumption estimate is generated using EnergyPlus
– a physics-based building energy simulation engine [20]. This model uses historical weather data
and typical building-level information on materials, operating schedules, and mechanical systems to
produce hourly predictions of energy usage by non-retrofitted buildings in our study period. These
are based on archetypal building characteristics from DOE commercial reference buildings [21].
We also generate "retrofit" simulations by varying physical building parameters based on retrofit
recommendations often adopted by commercial or mixed-use buildings [22]. We apply three different
retrofits: a window retrofit, a lighting retrofit, and a "full" retrofit that combines the two. The window
retrofit modulates thermal transmittance (U-value) and the lighting retrofit modulates lighting power
density.

2.2 Context-Aware Time Series Prediction

The first step in our hybrid physical modeling approach is the training of a baseline deep learning
model that aims to capture discrepancies between simulation predictions and observed energy
consumption associated with urban context effects. We train and validate our model via hindcasting
– using historical simulations as inputs to predict historical observed energy usage. To capture
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Building Urban
Hourly 23.2% 9.9%
Daily 14.8% 5.6%
Monthly 9.8% 1.4%

Table 1: Mean average percent error of with
context model across spatiotemporal scales Figure 2: (a) Density plot of predictions and actual

values for no context model. (b) Density plot for with
context model. Horizontal features absent, indicating
advantage of reduced model bias.

dependencies across multiple timesteps, we adopt a model suitable for a many-to-many prediction
task. We input the 24 most recent simulation timesteps S = [~st−23 · · · ~st] (one full day) to generate
predictions P . Although we use just one model to predict energy consumption for all 29 buildings,
we optimize our model from a single loss curve to avoid difficulties in model training diagnosis
stemming from multiple optimization objectives and loss curves. We accomplish this by one-hot
encoding the target building for prediction as a model input. Therefore, for each target building bk,
the model output at each timestep is a scalar prediction pk

t instead of the length N output vector
~pt. Optimization is performed using an Adam optimizer with a learning rate of 1e-3, chosen for its
adaptive learning rate and invariance to scaling of the objective function.

A variant of the recurrent neural network (RNN) called the long-short term memory (LSTM) model
[23] is chosen for its resistance to exploding and vanishing gradients during training and adaptability
to many-to-many prediction tasks. We also evaluate more complex models using convolutional neural
networks (CNN-LSTM) and LSTM autoencoders [24] but in practice find that a vanilla LSTM is an
appropriate level of complexity. All subsequent experiments therefore use 2 sequential LSTM 64 unit
layers and 2 time-distributed fully connected layers configured for a many-to-many prediction task.

Urban context is implicitly modeled by inputting all simulation outputs ~st regardless of the target
building bk. The model is then free to learn the time series characteristics of different retrofits, as
well as complex interdependencies between physics-based simulations of multiple buildings. Using
a single model for prediction of multiple buildings is complicated by the wide range of energy use
observed across buildings of different sizes. For each building, we seek an absolute error value
roughly proportional to its average energy use, so we choose mean absolute error loss in our training
loop for its intermediacy between mean absolute percentage error and mean squared error. The former
optimizes for low-energy buildings with proportionally larger noise, while the latter penalizes the
relatively larger errors in high-energy buildings disproportionately.

We isolate the effect of urban context by training an additional model "without context." Concretely,
instead of making simulation outputs of all buildings accessible to the model in each prediction, only
the simulation output skt corresponding to the target building bk is given. After with context and no
context models are trained, their outputs are compared to characterize the effects of urban context.

2.3 Using Context to Optimize Retrofit Strategy

Next, we create a retrofit installation plan for our 29-building case study that uses urban context to
optimize energy savings and reduce costs. Ideally, we can identify a retrofitted subset of buildings
that maximizes savings while minimizing retrofits. Using our model trained on a baseline dataset
of non-retrofitted simulations and ground truth observations, we can simulate retrofitting different
building subsets and output new energy consumption predictions. In a set of n elements, there are
2n possible subsets, making a brute force approach to constructing and testing every subset of 29
buildings intractable. In contrast, evaluating buildings individually for their retrofit potential ignores
aggregate inter-building effects that may arise when multiple buildings are retrofitted.

We design a greedy optimization algorithm that aims to maximize cumulative energy savings across
buildings. For each building candidate, our model predicts the marginal change in energy savings
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Figure 3: Ratio of monthly variance in
the with context and no context models.

Figure 4: Cumulative proportion of maximum possible
energy savings for each retrofit and model combination.

achieved from its addition to the retrofitted subset. The candidate with the greatest marginal savings
is permanently added to the subset. The algorithm continues until all there are no building candidates
left that result in marginal energy savings. We find the global maximum in energy savings for building
subsets of size n ≤ 4 through brute force and find that our method converges on an equivalent optimal
subset of buildings. Future work may identify strategies to avoid converging on local optima.

We compare this performance to a naive procedure in which buildings are simply selected sequentially
according to decreasing projected savings in the energy usage simulation alone.

3 Results

Context-aware models improve accuracy at multiple scales: Our model achieves 23.2% mean
average percentage error on energy usage prediction at an hourly, individual building resolution.
Performance at less granular spatiotemporal scales can be viewed in Table 1. In comparison, no
context models suffer from approximately 5% greater error across spatiotemporal scales. Regions of
horizontal density in Figure 2(a) convey narrow prediction ranges in no context models, suggesting
an excessively biased model due to missing urban context. In contrast, with context models are
able to capture this lost variation, as shown in Figure 2(b). In this case, our hybrid physical model
demonstrates consistent performance across all buildings in our case study despite highly variable
energy footprints and usage patterns. Figure 3 emphasizes how the with context model is able to
capture greater seasonal variance arising from urban context effects.

Context can be used to reduce retrofit installation requirements: The maximum projected sav-
ings across all buildings is 14.4% in simulation and 13.8% for the hybrid physical model. While
comparable in magnitude, these savings are achieved through very different means. According to
Figure 4, in the case of a full retrofit, 80% of these savings are achieved by retrofitting 11 buildings
in the naive simulation case. In contrast, our hybrid physical model suggests that only 6 buildings
need to be retrofitted to break the 80% savings mark across all retrofit types tested. Among these 6
buildings, savings are on average 7.9 times greater than when isolated in simulation, emphasizing
how improved modeling capacity of our model can help expose latent "multiplier" effects attributed to
urban context. This should be regarded as an upper bound for multipliers attributed to urban context
as it is possible that other latent variables are partially responsible for predicted savings.

While not necessarily a global optimum, our results suggest that policymakers may greatly benefit
from using hybrid physical models to inform retrofit strategies that maximize energy savings while
reducing the costs and logistical challenges associated with retrofitting a large number of buildings.
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4 Conclusion and Future Work

The dominance of buildings among contributors to greenhouse gases greatly augments the potential
importance of retrofits in mitigating climate change. While simulation and deep learning have
individually made significant progress in characterizing and highlighting buildings with a current
deficit in energy efficiency, we demonstrate the potential of hybrid physical models in identifying
buildings where multiplier effects may yield a surplus of energy efficiency through careful modeling
of the urban context. Further validation on other buildings, cities, and retrofit types is required to gain
confidence in the usefulness of our approach to wide variety of urban environments worldwide.

Appendix

A 3D model of the buildings used in our study area can be found in Figure 5. Specific details on the
retrofit parameters used in our experiments are in Figure 6.

We also further characterize the effect of geographic proximity on retrofit influence via an additional
"block" experiment. Instead of retrofitting all buildings in our case study or retrofitting buildings
in stepwise increments, we choose a "block" of proximal buildings to retrofit. We then evaluate
deviation in energy use of non-retrofitted buildings from the baseline. A slight tendency for retrofitted
buildings to exert less influence on distant buildings is observed in Figure 7, but a larger dataset is
necessary to substantiate any claims.

Figure 5: Buildings in our Sacramento, California study area.

Figure 6: Detailed information on retrofits used in ex-
perimentation.

Figure 7: % Change in energy use
(negative is savings) vs. Distance to
the nearest retrofitted building.
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