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Abstract

Numerical simulations have revolutionized material design. However, although
simulations excel at mapping an input material to its output property, their direct
application to inverse design (i.e., mapping an input property to an optimal output
material) has traditionally been limited by their high computing cost and lack
of differentiability—so that simulations are often replaced by surrogate machine
learning models in inverse design problems. Here, taking the example of the in-
verse design of a porous matrix featuring targeted sorption isotherm, we introduce
a computational inverse design framework that addresses these challenges. We
reformulate a lattice density functional theory of sorption as a differentiable simu-
lation programmed on TensorFlow platform that leverages automated end-to-end
differentiation. Thanks to its differentiability, the simulation is used to directly
train a deep generative model, which outputs an optimal porous matrix based
on an arbitrary input sorption isotherm curve. Importantly, this inverse design
pipeline leverages for the first time the power of tensor processing units (TPU)—an
emerging family of dedicated chips, which, although they are specialized in deep
learning, are flexible enough for intensive scientific simulations. This approach
holds promise to accelerate inverse materials design.

1 Introduction

Numerical simulations have transformed the way we design materials (1). For instance, density
functional theory and molecular dynamics excel at predicting the properties of materials based on the
knowledge of their composition and atomic structure (2; 3). This makes it possible to replace costly
trial-and-error experiments by simulations so as to screen in silico promising materials (4). However,
numerical simulations are of limited help to tackle “inverse design” problems (i.e., identifying an
optimal material featuring optimal properties within a given design space) (5; 6; 7). Indeed, although
numerical simulations are typically faster and cheaper than experiments, their computational burden
usually prevents a thorough exploration of the design space (e.g., the systematic exploration of all
possible materials’ compositions) (8). In addition, traditional numerical simulations are usually not
differentiable, which prevents their seamless integration with gradient-based optimization methods
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(9; 10). These limitations—which are reminiscent of the state of machine learning before automatic
differentiation became popular (11)—have limited the use of numerical simulations in inverse design
pipelines (12).

To address this issue, it is common to replace simulations by a differentiable surrogate predictor
machine learning model, which aims to approximately interpolate the mapping between design space
parameters (e.g., the material’s structure) and the target property of interest (7; 12; 13). Following
this approach, Generative Networks (GNs) (5) have been used for inverse design application using,
for instance, autoencoders (14), generative adversarial networks (15), or generative inverse design
networks (12). The generator can then be combined with the differentiable surrogate predictor
in the same pipeline so as to be trained by gradient backpropagation (12; 16; 17). However, this
approach can result in difficulties associated with the fact that the generator and predictor must both
be trained, either simultaneously or sequentially. In addition, the ability of the generator to discover
new unknown, potentially non-intuitive material designs (i.e., which are very different from those
in the training set) is often limited by the accuracy and generalizability of the surrogate predictor
(5; 6; 7).

Here, to address these challenges, we introduce a deep generative pipeline that combines an end-to-end
differentiable simulator with a generator model. We illustrate the power of this approach by taking the
example of the inverse design of a porous matrix featuring targeted sorption isotherm—wherein the
sorption isotherm corresponds here to the amount of adsorbed liquid water in the porous structure as
a function of relative humidity. This is enabled by the implementation of an end-to-end differentiable
lattice-based density functional theory code in TensorFlow (18; 19). We show that the trained
generative model is able to successfully generate porous structures with arbitrary sorption curves.
Moreover, this generator-simulator pipeline leverages for the first time the power of tensor processing
units (TPU)—an emerging family of dedicated chips (20), which, although they are specialized in
deep learning, are flexible enough for intensive scientific simulations. This approach holds promise
to accelerate the inverse design of materials with tailored properties and functionalities.

2 Related work

TPU in scientific simulations. TPU is a family of dedicated chips that assemble different computing
units for machine learning applications (21). In contrast to general purposes processors (i.e., CPUs
and GPUs), TPUs are specifically designed as matrix processors thanks to their matrix unit (MXU)
(22; 23). Although TPUs have been extensively used for deep learning, their application to numerical
simulations has thus far remained limited an Ising model (24). However, TPUs exhibit enough
flexibility to have the potential to accelerate a broader range of computations.

End-to-end differentiable simulations. With the recent expansion of automatic differentiation tech-
nologies (25; 26), differentiable programming platforms—such as TensorFlow (18), JAX (19), and
TaiChi (27)—are rapidly developing and getting attention for differentiable simulation applications
(28; 29), including molecular dynamics [[10,11]] and robotic dynamics (30). However, it has never
been applied to lattice-based density functional theory simulations.

Generative Networks for materials’ inverse design. Many recent works have been using a genera-
tor combined with a surrogate predictor trained based on a simulator for inverse design applications
(6; 7; 12; 13; 16; 17). For example, Gu et al. recently developed generative inverse design networks
to discover composite structures featuring optimal target mechanical properties (12). However,
the potential of directly training the generator based on a differentiable predictor has received less
attention.

3 End-to-end differentiable simulator

We first focus on the end-to-end differentiable implementation of the sorption simulator used herein.
We consider as a toy model a square N-by-N lattice, wherein each pixel i of the grid can be filled with
solid or be a pore (see Figure 1a). Initially empty pixel can then be filled with water upon increasing
relative humidity (RH). In a given configuration, the state of each pixel i is given by the knowledge
of (ηi, ρi), where ηi = 0 and 1 indicate that the pixel if filled with solid or is a pore, respectively, and
ρi is the density of water in the pore (ρi = 0 and 1 denote that the pore is fully empty or saturated
with water, respectively). The equilibrium fraction of water in each pore at given temperature T and
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Figure 1: End-to-end differentiable simulation of water adsorption in porous materials. (a) Illustration
of the numerical water sorption simulation for a target porous matrix. (b) End-to-end differentiable
reformation of the sorption simulation as a series of convolutional layers in TensorFlow. (c i)
Comparison between the sorption curve ground-truth (undifferentiable) sorption simulator and its
reformulated differentiable counterpart for the porous matrix shown in panel (a), which defines the
percentage loss. (c ii) Average percentage loss as a function of the number of convolution layers.

RH is then solved by lattice density functional theory (LDFT) (31; 32). Based on this formalism, the
water density ρi at a given pixel i is given by:

ρi = ηi/(1 + e−{µ+Σj/i[wffρj+wmf (1−ηj)]}/kT ) (1)

where µ is the chemical potential (which depends on RH), k is the Boltzmann constant, wff is
interaction energy between two neighboring pixels that are filled with water, wmf is the interaction
energy between a pixel filled with water and a substrate (i.e., a neighboring pixel filled with solid),
and j/i are the pixel IDs of the 4 neighbors of pixel i (note that, to avoid any surface effect, periodic
boundary conditions are applied) (32). As such, the water density at a given pixel i depends on the
state of its 4 neighbors, which is essentially a convolution operation. At fixed RH, the equilibrium
fraction of water is then determined by iteratively applying Eq. (1) on each pixel until a convergence
in the ρi values is obtained. The sorption of water in the porous matrix is then iteratively simulated
by computing the equilibrium values of ρi for RH = 0-to-100% with an increment dRH. At each
increment K, the equilibrium water density values {ρi}Kth at RH = K × dRH serve as starting
configuration to calculate {ρi}K+1 at the subsequent step K + 1. More details of the numerical
simulations can be found in Ref. (32).

Such (LDFT) simulations are traditionally not differentiable. Here, to address this limitation, we
decompose Eq. (1) into a series of mathematical operations that can be implemented as differen-
tiable computation layers in TensorFlow (Figure 1b). For instance, the CONV layer represents the
convolution operation in Eq. (1)—i.e., one of the operations that can be efficiently performed by
TPUs. This block is then repeated into M convolutional layers, which is equivalent to iteratively
solving Eq. (1) until a convergence in the water density is achieved. Figure 1c shows the accuracy
of the TensorFlow-based simulator as a function of M. We find that M = 100 offers satisfactory
accuracy. Overall, by reformulating the LDFT simulation into a succession of convolutional layers,
this approach enables end-to-end differentiability and TPU acceleration.
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Figure 2: Training of the generative model by differentiable simulation and tensor processing unit
(TPU) computing. (a) General architecture of the generator-simulator training pipeline. (b) Evolution
of the test set loss function of a function of the number of training epochs. (c) Comparison of the
training time per batch as a function of the grid size and batch size offered by Google’s TPU-v2 and
an NVIDIA TITAN X GPU.

4 Training of the generative model

4.1 Architecture of the generator-simulator pipeline

In this section, we first present the architecture of our generative model and its integration with
the differentiable simulator presented in Sec. 3. Figure 2a shows the architecture of the generator-
simulator pipeline. In detail, the training pipeline takes as inputs the sorption isotherms curves of
the training set, which are transformed into porous matrices by the generator. The generated grids
are then fed to the differentiable simulator to compute the “real” sorption curve of the generated
porous matrices. In detail, the generator is designed as a dual, parallel deconvolution-block structure,
where each block is fed with half of the input curve to decrease the generator complexity. These
two blocks aim to specifically generate small and large pores, which are saturated with water at low
and large RH, respectively. Since each layer of the pipeline is differentiable, the generator can then
be optimized by gradient backpropagation in TensorFlow so as to minimize the difference between
the input and output sorption curves. Note that, here, the convolutional layers of the simulator are
hard-coded with fixed weights and, hence, are not optimized. This is key advantage of our approach
since it avoids difficulties arising from the simultaneous optimization of the generator and predictor
in traditional implementations of generative pipelines.

4.2 Training acceleration by Tensor Processing Unit computing

During the training process, a grid size of 20×20 yields about 7 million parameters to be optimized
for the generator, while the simulator comprises about 4000 convolution layers to compute. Here,
the generator is trained based on a training set of 6,400,000 sorption isotherm curves and then
subsequently evaluated based on a test set of 8,769 curves. Figure 2b shows the evolution of the loss
function L (i.e., the difference between input and output sorption curve, see Fig. 1c) as a function
of the number of training epochs, wherein the batch size is set as 64 and each epoch contain 1000
batches. We find that the accuracy of the generator plateaus after 50 epochs (which corresponds to a
training size of 3,200,000). Considering the large depth of the simulator and the number of parameters
to be optimized in the generator, the training process comes with a significant computational cost.
To mitigate this issue, as a pioneering experiment, the training is conducted on TPUs (20). Figure
2c show the training time per batch as a function of both grid size and batch size on a TPU-v2 chip
with 8 cores and 64 GB memory (20). The computational performance is compared with the training

4



0 50 100
RH (%)

0.0

0.5

1.0

ρ w
 (a

.u
.)

Target
Prediction

0 50 100
RH (%)

0.0

0.5

1.0

ρ w
 (a

.u
.)

Target
Prediction

0 50 100
RH (%)

0.0

0.5

1.0

ρ w
 (a

.u
.) condensation

condensation
High-RH

Low-RH

Medium-RH

condensation

(a) Simulator S(𝑥) Generator G(S(𝑥))

S 𝑥

𝐒 𝐆 𝐒 𝒙 = 𝐒(𝒙)

1

2

3

1
2

3

1

2

3

1
2 3

𝑥 = 𝜂! "×"

S G S 𝑥

Small 
pore

Medium 
pore

Large 
pore

Small pore

Medium pore

Large pore

(b)

Combination pores of 
different sizes

Figure 3: Accuracy of the generative model. (a) Illustration of three porous matrices that are generated
so as to present three archetypical sorption isotherms associated with small, medium, and large pores.
(b) Porous matrix generated for a target sorption curve y = x.

time yielded by a NVIDIA TITAN X GPU. All benchmarks are conducted on Google Colab using
the same TensorFlow code and single precision (float32). We find that, especially for large grid size
and batch size, the deliciated TPU hardware results in a training time that is several times faster than
that offered by the GPU hardware considered herein (more than 6× faster). These results highlight
the exciting, largely untapped potential of TPU computing in accelerating computationally-intensive
scientific simulations (i.e., besides traditional deep learning applications).

4.3 Accuracy of the generator

Finally, we evaluate the accuracy of the trained generator on the test set (which comprises more
than 8000 target sorption isotherms). After training, we find that the generator exhibits an average
prediction loss of 3% (see Figure 2b), which is here considered very good. Figure 3a offers an
illustration of three porous matrices that are generated so as to present three archetypical sorption
isotherms wherein: (i) full water saturation occurs at very low RH (which arises in the presence of
very small pores), (ii) water saturation is delayed and occurs at very large RH (which is a consequence
of large pores), and (iii) an intermediate case (with medium-size pores). Overall, we find that the
generator model is able to predict realistic porous matrices, with expected length scales for the pores.
Importantly, the simulated sorption curves of the generated porous structures exhibit all the features
(in terms of trend, convexity, and value) as the target sorption curves.

As a final test of the generator, we assess the ability of the generator to predict a porous structure
featuring a target identity sorption curve y = x. This is an especially challenging test set case since
(i) the sorption curve is not included in the training set, (ii) such a smooth sorption curve (with no
sudden jump in water sorption) requires a complex, continuous pore size distribution, and (iii) this
case corresponds to maximum degeneracy—unlike the cases of a 1-pixel or (N – 1)×(N – 1) pores,
which present a limited number of possible solutions. Once again, we find that the generator yields a
very realistic generated porous matrix, which, as expected, exhibits a combination of small, medium,
and large pores (see Fig. 3b). Notably, the real sorption curve (computed by the simulator) of the
generated porous matrix indeed exhibit a very close match with the y = x target. This confirms that
the generative model has learned the basic physical rules governing water sorption in porous media
(e.g., small and large pores get saturated as low and high RH, etc.) and can successfully predict new
unknown porous structures featuring tailored arbitrary sorption curves. In that regard, the fact that the
generator is directly trained based on the simulator (rather than on surrogate model that approximates
reality by learning from finite training set examples) is key to ensure that the generator is not limited
by the accuracy of the predictor, or its ability to extrapolate predictions to grids it has never been
exposed to during its training.
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5 Conclusion

Overall, this work establishes a robust pipeline to enable the inverse design of materials by leveraging
an end-to-end differentiable simulation as predictor. The fact that the generator is directly trained
based on a simulator rather than on a surrogate machine learning model is key to ensure that the
generator is not limited by the accuracy or extrapolation ability of the predictor. As a key enabler of
this approach, we adopt TPUs to accelerate the training of the generator by gradient backpropagation
in TensorFlow. This illustrates the exciting possibilities of TPU computing to accelerate scientific
numerical simulations.

Broader Impact

This research has several scientific and societal implications. First, this work illustrates the benefits
of integrating differentiable simulations in machine learning pipelines—which is key to accelerate
the discovery of new materials. Second, our results establish TPU computing as a promising route
to accelerate scientific simulations, which are ubiquitous in various applications (drug discovery by
molecular dynamics, architectural design by finite element method, weather forecast predictions,
etc.) (1; 2; 3). Finally, the ability to design new porous structures with tailored sorption isotherms
could leapfrog several important applications, including for CO2 capture (33; 34) and gas separation
(35; 36). In addition, designing new porous structures featuring a smooth, continuous sorption
isotherm (i.e., as close as possible to the y = x target used herein) is important for drug delivery
applications, to ensure that drugs are continuously released at a constant rate in a given environment
(37; 38).
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