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Abstract

We study the problem of optimizing expensive blackbox functions over combinato-
rial spaces (e.g., sets, sequences, trees, and graphs). BOCS [2] is a state-of-the-art
Bayesian optimization method for tractable statistical models, which performs
semi-definite programming based acquisition function optimization (AFO) to se-
lect the next structure for evaluation. Unfortunately, BOCS scales poorly for
large number of binary and/or categorical variables. Based on recent advances in
submodular relaxation [22] for solving Binary Quadratic Programs, we study an ap-
proach referred as Parametrized Submodular Relaxation (PSR) towards the goal of
improving the scalability and accuracy of solving AFO problems for BOCS model.
Experiments on diverse benchmark problems including real-world applications in
communications engineering and electronic design automation show significant
improvements with PSR for BOCS model.

1 Introduction
Many real-world science and engineering applications involve optimizing combinatorial spaces (e.g.,
sets, sequences, trees, and graphs) using expensive black-box evaluations. For example, in hardware
design optimization, we need to appropriately place the processing elements and communication links
for achieving high performance guided by expensive computational simulations to emulate the real
hardware. Bayesian optimization (BO) [29] is a popular framework for solving expensive black-box
optimization problem. BO framework consists of three key elements: 1) Statistical model (e.g.,
Gaussian Process) learned from past function evaluations; 2) Acquisition function (AF) (e.g., expected
improvement) to score the potential utility of evaluating an input based on the statistical model; and
3) Acquisition function optimization (AFO) to select the best candidate input for evaluation. In each
BO iteration, the selected input is evaluated and the statistical model is updated using the aggregate
training data. Most of the prior work on BO is focused on optimizing continuous spaces. There are
two key challenges to extend BO framework to combinatorial spaces. First, defining a surrogate
statistical model over combinatorial objects. Second, search through the combinatorial space to select
the next structure for evaluation given such a statistical model.

Prior work on combinatorial BO has addressed these two challenges as follows. SMAC [20, 21]
is a canonical baseline that employs complex statistical model in the form of random forest and
executes a hand-designed local search procedure for optimizing the acquisition function. A recent
work referred as COMBO [25] proposed a novel combinatorial graph representation for discrete
spaces which allows using Gaussian process with diffusion kernels. Reduction to continuous BO
[15] employs an encoder-decoder architecture to learn continuous representation of combinatorial
objects from data and performs BO in this latent space. Unfortunately, this approach requires a large
dataset of combinatorial objects, for learning the latent space, which is impossible to acquire for
many real-world applications. BOCS [2] is another method that employs a tractable statistical model
defined over binary variables and Thompson sampling as the acquisition function. These two choices
within BOCS leads to a semi-definite programming (SDP) based solution for solving AFO problems.
Unfortunately, BOCS approach scales poorly for large number of binary variables and for categorical
variables due to one-hot encoding representation.
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Our work is inspired by the success of submodular relaxation based inference methods in the structured
prediction literature [23, 33, 13, 16]. In this paper, we employ the submodular relaxation based
Binary Quadratic optimization approach proposed in [22] to improve the computational-efficiency
and accuracy of solving AFO problems for BOCS model. We refer to this approach as Parametrized
Submodular Relaxation (PSR) algorithm. First, we reformulate the AFO problem as submodular
relaxation with some parameters. This relaxed problem can be solved efficiently using minimum
graph cut algorithms [23, 5]. The accuracy of this relaxed problem critically depends on the unknown
parameters. Therefore, we solve an outer optimization problem to find the values of unknown
parameters with close approximation to the true objective. To the best of our knowledge, this is the
first application of submodular relaxation to solve combinatorial BO problems. Experimental results
on real-world benchmarks show the efficacy of PSR to improve the state-of-the-art on combinatorial
BO with tractable statistical models in terms of both computational-efficiency and accuracy.

Contributions. The main contributions of this paper are: 1) By leveraging the recent advances in
submodular relaxation, we study the parametrized submodular relaxation approach to improve the
scalability and accuracy of solving AFO problems for BOCS, the state-of-the-method for tractable
statistical models. 2) We perform comprehensive experiments on real-world benchmarks to show
computational-efficiency and accuracy improvements over existing BOCS method.

2 Problem Setup and Challenges

We are given a combinatorial space of structures X (e.g., sets, sequences, trees, graphs). Without
loss of generality, let each combinatorial structure x ∈ X be represented using n discrete variables
x1, x2, · · · , xn, where each variable xi takes k candidate values from the set CV(xi). For binary
variables, k equals 2 and for categorical variables, k is greater than 2. We assume the availability of
an unknown objective function F : X 7→ < to evaluate each combinatorial object x ∈ X . Each evalu-
ation is expensive and results in outcome y = F(x). For example, in hardware design optimization, x
is a graph corresponding to the placement of processing elements and communication links, and F(x)
corresponds to an expensive computational simulation. The overall goal is to minimize the number of
objective function evaluations to uncover a structure x ∈ X that approximately optimizes F . We
consider minimizing the objective F for the sake of technical exposition and consistent notation.

We now briefly explain the BOCS method [2] that we intend to improve on. Full discussion of related
work is provided in the Appendix A.1.

BOCS Approach. BOCS instantiates the three key elements of BO framework as follows. 1)
Surrogate statistical model: A linear Bayesian model defined over binary variables is employed as
the surrogate model. The model is described as:

fα(x ∈ X ) = α0 +
∑
j

αjxj +
∑
i,j>i

αijxixj (2.1)

where X = {0, 1}n and x ∈ X is a binary vector and α variables are drawn from a sparsity-inducing
horseshoe prior [6]. It was experimentally found that the above second-order model provides an
excellent trade-off between expressiveness and accuracy. The α variables quantify the uncertainty of
the model. 2) Acquisition function: Thompson sampling [28] is employed as the acquisition function
because of its proven theoretical and empirical properties in the context of BO. 3) Acquisition
function optimization: In each BO iteration, we select a candidate structure x ∈ X for evaluation that
minimizes the acquisition function. In the case of BOCS method, the acquisition function optimization
(AFO) problem becomes: arg minx∈X fα(x) + λP (x) , where λP (x) being a regularization term
commonly seen in multiple applications. BOCS employs a semi-definite programming (SDP) based
relaxation approach to solve the above AFO problem.

Scalability Challenges of BOCS. There are multiple challenges associated with SDP approach used
for solving AFO problems in BOCS formulation. First, the time complexity of a standard SDP
solver grows at the rate of O(n6) [34, 22], which is prohibitive for large dimensions. Second, the
approximation error for SDP based solution is known to be at most O(log n) [2, 8], which clearly
grows as the dimensions increase, resulting in the loss of accuracy as well. These scaling issues arise
when the number of binary variables are large especially since categorical variables are represented by
one-hot encoding in BOCS. Our goal in this paper is to provide an algorithmic approach to improve
the computational-efficiency and accuracy of solving AFO problems for BOCS method.
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3 Parametrized Submodular Relaxation

3.1 High-level Overview of PSR Algorithm

The overall idea of using submodular relaxations for optimizing BQP problems is extensively
employed in computer vision [17]. However, we employ the concrete instantiation of this general
framework as proposed in the context of prescriptive price optimization [22]. To the best of our
knowledge, this is the first application of submodular relaxation concepts to solve combinatorial BO
problems. Recall that AFO problem for BOCS method is:

arg min
x∈X

fα(x) + λP (x) (3.1)

where λP (x) is a regularization term commonly seen in multiple applications. For example, by
choosing P (x) = ‖x‖1, the optimization problem in 3.1 becomes a Binary Quadratic Program (BQP)
as given below:

arg min
x∈X

α0 +
∑
j

(αj + λ)xj +
∑
i,j>i

αijxixj (3.2)

arg min
x∈X

xTAx + bTx (3.3)

In the general case, BQP is NP-hard [8, 14]. We propose using an efficient submodular relaxation with
some unknown parameters (matrix Λ) for solving this problem. A key advantage of this relaxation is
that it allows us to leverage minimum graph cut algorithms to efficiently solve it. The accuracy of
this relaxed problem critically depends on the unknown parameters Λ. Therefore, we can utilize an
outer optimization problem to find the values of unknown parameters with close approximation to the
true acquisition function. We solve this optimization problem using an iterative algorithm (steps 5-9
in Algorithm 1). We perform two algorithmic steps in each iteration. First, we solve the parametrized
submodular relaxation of the AFO problem using a minimum graph cut algorithm (step 7). Second,
we update the values of unknown parameters Λ using proximal gradient descent (step 8). Algorithm
1 provides the complete pseudo-code of combinatorial BO using PSR algorithm.

Advantages of PSR algorithm. When compared to the semi-definite programming (SDP) relaxation
approach to solve AFO problems in BOCS, PSR algorithm has significant advantages in terms of
both computational-efficiency and accuracy of solving AFO problems. First, PSR relies on a small
number of calls (five to ten iterations based on our experiments) to a minimum graph cut solver, which
has relatively very low time-complexity (e.g. O(n3) for preflow-push algorithms or O(n3 log n)
for Dinic’s algorithm [1]) which is significantly better than O(n6) for SDP approach. Second, our
experiments show that PSR algorithm significantly improves the accuracy over SDP approach with
increased dimensionality.

3.2 Key Algorithmic Steps

The two main algorithmic steps of PSR algorithm are: submodularization of the objective with
unknown parameters and finding optimized parameters to improve the accuracy of relaxation. The
binary quadratic objective function (xTAx + bTx in 3.3) is called as submodular if all the elements
of the matrix A are non-positive, i.e., aij ∈ A ≤ 0 ∀i, j. However, in our setting, it is not necessary
that the BQP objective in Equation 3.3 follows the submodularity property. As mentioned earlier, we
approximate the objective by constructing a submodular relaxation in the same way as [22]. This
relaxation is parametrized by a matrix Λ, which is directly related to the quality of approximation.

Consider the objective in 3.3 written as a sum of two terms decomposed over the positive (A+) and
non-positive (A−) terms of matrix A:

xTAx + bTx = xTA+x + xTA−x + bTx (3.4)

where A+ +A− = A and A+ and A− are defined as follows:

A+ =

{
aij if aij > 0
0 if aij ≤ 0

∀aij ∈ A, A− =

{
aij if aij ≤ 0
0 if aij > 0

∀aij ∈ A

The second term in Equation 3.4 (xTA−x + bTx) is a submodular function. Similar to the strategy
employed for prescriptive price optimization [22], we construct a submodular relaxation of the first
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Algorithm 1 Combinatorial BO via PSR Algorithm
Input: X = Discrete space, F(x) = expensive objective function, statistical model fα(x ∈ X )
Output: (xbest, F(xbest)), the best uncovered input xbest with its function value
1: Initialize statistical model fα with a small number of input-output examples; and t← 0
2: repeat
3: Sample α from posterior of fα
4: Compute the next input to evaluate via acquisition function optimization:

xt+1 ← arg minx∈X AF (fα,x)
5: Initialize parameters Λ
6: repeat
7: Solve parametrized submodular relaxation of the AFO problem using graph cuts
8: Update Λ via proximal gradient descent
9: until convergence of optimization over Λ

10: Evaluate objective function F(x) at xt+1 to get yt+1

11: Aggregate the data: Dt+1 ← Dt ∪ {(xt+1, yt+1)} and update the model
12: t← t+ 1
13: until convergence or maximum iterations
14: xbest ← arg minxt∈D yt
15: return the best uncovered input xbest and the corresponding function value F(xbest)

term by bounding it below by a linear function h(x) such that h(x) ≤ xTA+x ∀x ∈ {0, 1}n. It can
be easily seen that h(x) = xT (A+ ◦Λ)1+1T (A+ ◦Λ)x−1T (A+ ◦Λ)1 is an affine lower bound to
xTA+x, where ◦ represents Hadamard product and Λ is a matrix defined as follows: Λ = [λij ]n×n,
where λij ∈ [0, 1] is a parameter satisfying the following inequality:

λij(xi + xj − 1) ≤ xixj (3.5)

Using h(x) as the affine lower bound, our new optimization problem becomes:

min
x∈X

h(x) + xTA−x + bTx (3.6)

We use hΛ(x) for denoting the combination of two linear terms in (3.6) i.e. hΛ(x) = h(x) + bTx,
along with signifying the dependence on Λ parameter.

min
x∈X

hΛ(x) + xTA−x (3.7)

It should be noted again that the objective in (3.7) is a lower bound of the original objective in (3.4).
This relaxed submodular objective can be solved exactly by turning it into a minimum graph cut
problem and utilizing an efficient minimum graph cut algorithm [5]. For a given Λ, we employ a
standard graph construction strategy [23] (described in detail in the Appendix A.2.1) dependent on
the α parameters sampled from the surrogate model fα at each BO iteration. A graphG is constructed
with n+ 2 vertices: V = {s, t, v1, · · · , vn} where each non-terminal vertex vi encode one discrete
variable xi ∈ {0, 1}.
The quality of approximation of the above-mentioned submodular relaxation objective (3.7) critically
depends on Λ parameters. [22] constructed an outer optimization problem to improve the accuracy of
this relaxation and maximized the objective w.r.t Λ to achieve the best approximation possible. We
use the same procedure which is described in the Appendix A.2.2.

4 Experiments and Results

We first describe our experimental setup, and then present results comparing state-of-the-art BOCS
method with SDP relaxation and our proposed parameterized submodular relaxation (PSR) algorithm.

4.1 Experimental Setup

Benchmark domains. We employ five diverse synthetic and real-world benchmarks for our empirical
evaluation. Additional experimental details and discussion on Ising benchmark are provided in the
Appendix A.3
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Figure 1: Results comparing PSR algorithm and SDP approach on average AFO time normalized
w.r.t PSR. The title of each figure refers to the benchmark with corresponding parameter (if any).
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Figure 2: Results comparing the accuracy of the AF minimizers obtained by PSR and SDP approach
measured in terms of Average percent improvement in the AF objective over all iterations of the BO
procedure.

1. Binary quadratic programming (BQP). The goal in binary quadratic programming (BQP) [2]
is to maximize a binary quadratic function with l1 regularization: maxx∈{0,1}n(xTQx − λ‖x‖1),
where Q is a randomly generated matrix defined as Hadamard product of two matrices (M and
K); Q = M ◦ K, where M ∈ Rn×n,Mij = N (0, 1), N (0, 1) stands for the standard Gaussian
distribution and K ∈ Rn×n,Kij = exp(−(i− j)2/α2), α is the correlation length parameter.

2. Contamination. This problem considers a food supply with n stages, where a binary {0,1}
decision (xi) must be made at each stage to prevent the food from being contaminated with pathogenic
micro-organisms [19].

3. Low auto-correlation binary sequences (LABS). The problem is to find a binary {+1,-1} se-
quence S = (s1, s2, · · · , sn) of given length n that maximizes merit factor defined over a binary
sequence. This problem has multiple applications in diverse scientific disciplines including communi-
cations engineering where it is used in high-precision interplanetary radar measurements[26, 30].

4. Network optimization in multicore chips. The objective in this domain is to optimize the
placement of 17 communication links between 12 cores of a multi-core architecture (66 binary
variables) to facilitate efficient data transfer. This optimization is guided by expensive simulators
that mimics the real hardware. The network optimization problem is part of the rodinia benchmark
[9] and uses the gem5-GPU simulator [27].

Evaluation metrics. We demonstrate the advantages of our PSR algorithm for combinatorial BO by
comparing it with the state-of-the-art BOCS approach along two fronts.

1) Scalability and accuracy of AF optimization. We compare PSR and SDP approaches for solving
acquisition function optimization problems within BOCS method. To evaluate scalability for AFO,
we report the average AFO time across all BO iterations normalized w.r.t PSR. Suppose TSDP and
TPSR stand for average AFO time for some input dimensionality d. We normalize TSDP and TPSR
using the AFO time of PSR for the smallest dimension. To evaluate the accuracy of solving AFO
problems, we report the average percentage improvement in the AF objective achieved by PSR when
compared to the corresponding AF objective from SDP.
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Figure 3: Results comparing BOCS with PSR (orange line) algorithm and BOCS with SDP (blue line)
approach on best function value achieved versus number of iterations. The horizontal axis (x-axis)
depicts number of iterations while the vertical axis (y-axis) depicts the best function value.

2) Overall BO accuracy. We use the best function value achieved after a given number of BO
iterations (function evaluations) as a metric to evaluate the two methods: BOCS w/ SDP and BOCS
w/ PSR. Note that BOCS is already shown to significantly improve over SMAC [2]. The method
that uncovers high-performing combinatorial structures with less number of function evaluations is
considered better. We use the total number of BO iterations similar to BOCS [2].

4.2 Results for Acquisition Function Optimization

Average AFO time. Figure 1 shows the results of PSR and SDP approaches as a function of
increasing dimension. Recall that we normalize the average AFO time w.r.t that of PSR for smallest
dimension (base case). We can clearly see that the proposed PSR approach requires significantly low
computation time when compared to the SDP approach and the gap increases with increasing input
dimensions. This supports our claim that PSR algorithm improves the scalability of AFO problems
in combinatorial BO setting. It should be noted that AFO problem is solved at each BO iteration.
For example, if we run BO for 250 iterations, we need to solve 250 AFO problems. Therefore, the
computational-efficiency of PSR is compounded across the entire BO procedure.

Average percentage improvement in AF objective. PSR algorithm also finds better optimized
value for AFO problems on each benchmark domain as shown in Figure 2. The vertical axis of the
plots in Figure 2 represent the average percentage improvement in AF objective obtained by PSR
when compared to that obtained by SDP (higher the better). PSR algorithm always finds a minimizer
with lower AF value when compared to SDP’s minimizer on all benchmarks. Furthermore, this
accuracy gap increases with increasing dimensions reinforcing the ability of PSR to scale to large
dimensions while also improving the accuracy.

4.3 Results for Overall BO Accuracy

The main goal in BO is to find best accuracy on the true expensive black-box function O. Ideally,
the gains in accuracy for solving AFO problems as shown in previous section should reflect in the
overall BO performance using the proposed PSR approach. Indeed, Figure 3 clearly shows that using
the BOCS model with PSR algorithm improves the overall accuracy of the BO procedure on all
benchmark domains. This is a direct consequence of the improved accuracy achieved by the PSR
algorithm in solving AFO problems at each BO iteration. All the reported results are averaged over
10 random runs.

5 Conclusions

This paper studied a principled approach referred as parametrized submodular relaxation (PSR) to
improve the scalability and accuracy of the state-of-the-art combinatorial Bayesian optimization
algorithm with tractable statistical models called BOCS. The key idea is to reformulate the acquisition
function optimization to select the next structure for evaluation as submodular relaxation with some
parameters, and perform search over these parameters to improve the accuracy of this relaxed problem.
Our experimental results on diverse benchmarks showed that PSR algorithm significantly improved
the computational-efficiency and accuracy of BOCS.
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A Appendix

A.1 Detailed related work

There is very limited work on BO over discrete spaces when compared to continuous space BO,
which has seen huge growth over the last few years [11, 12, 31, 35, 32, 18, 3, 4]. SMAC [20, 21] is
one canonical baseline which employs random forest as surrogate model and a hand-designed local
search procedure for optimizing the acquisition function. BOCS [2] employs a parametric statistical
models over binary variables, which allows pricipled acquisition function optimization based on
semi-definite program solvers. COMBO [25] is a state-of-the-art non-parametric approach that
employs Gaussian processes with diffusion kernels defined over discrete spaces as its surrogate model.
However, COMBO employs local search with random restarts for acquisition function optimization.

COMBO was shown to achieve better performance than BOCS for complex domains that require
modeling higher-order dependencies between discrete variables. However, BOCS achieves good
performance whenever the modeling assumptions (e.g., lower-order interactions among variables)
are met. Furthermore, the AFO problem in BOCS is a Binary Quadratic Programming (BQP)
problem which is well-studied in many fields including computer vision [23] and prescriptive price
optimization [22]. In comparison, the acquisition function optimization is much more challenging
(results in general non-linear combinatorial optimization problem) for methods such as COMBO and
SMAC that employs non-parametric statistical models. A learning to search framework referred as
L2S-DISCO [10] was introduced recently to solve the challenges of AFO problems with complex
statistical models (e.g., GPs with discrete kernels and random forest). The key insight behind L2S-
DISCO is to directly tune the search via learning during the optimization process to select the next
structure for evaluation by leveraging the close relationship between AFO problems across BO
iterations (i.e., amortized AFO). Since the main focus of this paper is on improving the scalability
and accuracy of AFO for the tractable statistical model introduced in BOCS, we describe the details
of this approach below.

BOCS Approach. BOCS instantiates the three key elements of BO framework as follows. 1)
Surrogate statistical model: A linear Bayesian model defined over binary variables is employed as
the surrogate model. The model is described as:

fα(x ∈ X ) = α0 +
∑
j

αjxj +
∑
i,j>i

αijxixj (A.1)

where X = {0, 1}n and x ∈ X is a binary vector and α variables are drawn from a sparsity-inducing
horseshoe prior [6]. It was experimentally found that the above second-order model provides an
excellent trade-off between expressiveness and accuracy. The α variables quantify the uncertainty of
the model. 2) Acquisition function: Thompson sampling [28] is employed as the acquisition function
because of its proven theoretical and empirical properties in the context of BO. 3) Acquisition
function optimization: In each BO iteration, we select a candidate structure x ∈ X for evaluation
that minimizes the acquisition function. In the case of BOCS method, the acquisition function
optimization (AFO) problem becomes:

arg min
x∈X

fα(x) + λP (x) (A.2)

where λP (x) being a regularization term commonly seen in multiple applications. BOCS employs a
semi-definite programming (SDP) based relaxation approach to solve the above AFO problem.

Scalability Challenges of BOCS. There are multiple challenges associated with SDP approach used
for solving AFO problems in BOCS formulation. First, the time complexity of a standard SDP
solver grows at the rate of O(n6) [34, 22], which is prohibitive for large dimensions. Second, the
approximation error for SDP based solution is known to be at most O(log n) [2, 8], which clearly
grows as the dimensions increase, resulting in the loss of accuracy as well. These scaling issues arise
when the number of binary variables are large. Since BOCS represents categorical variables using
one-hot encoding, even a small number of categorical variables can lead to a large number of binary
variables (e.g., placement of processing elements in hardware design). Our goal in this paper is to
provide an algorithmic approach to improve the computational-efficiency and accuracy of solving
AFO problems for BOCS method.
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A.2 Additional details of PSR algorithm

A.2.1 Graph construction strategy

For a given Λ, we employ a standard graph construction strategy [23] dependent on the α parameters
sampled from the surrogate model fα at each BO iteration to solve the objective described in (3.7). A
graph G is constructed with n+2 vertices: V = {s, t, v1, · · · , vn} where each non-terminal vertex vi
encode one discrete variable xi ∈ {0, 1}. For each term depending on one variable xi (each non-zero
entry of hΛ(x) in (3.7)), an edge is added in the graph from s to vi with capacity hΛ(xi) if hΛ(xi) is
positive or from vi to t with capacity −1 · hΛ(xi) if it is negative. Further, each term depending on
pair of variables xixj (each non-zero entry of A− in (3.7)) is represented by two edges i.e. edge vi to
vj and edge vj to t with capacity −1 ·A−ij .

A.2.2 Optimizing Λ Parameters to Improve Accuracy

The quality of approximation of the submodular relaxation objective (3.7) critically depends on Λ
parameters. [22] constructed an outer optimization problem to improve the accuracy of this relaxation
and maximized the objective w.r.t Λ to achieve the best approximation possible. We use the same
procedure which is described as follows. By including the outer optimization over Λ, the overall
problem becomes:

max
Λ∈[0,1]n×n

(min
x∈D

hΛ(x) + xTA−x) (A.3)

Equivalently, the outer maximization can be turned into minimization by considering the negative of
the outer objective.

min
Λ∈[0,1]n×n

−1 · (min
x∈D

hΛ(x) + xTA−x) (A.4)

This optimization problem can be solved efficiently using an iterative algorithm that alternates
between solving the inner optimization over x via graph cut formulation and proximal gradient
descent over Λ. If xi is the solution of the submodularized inner objective in (A.4) at the ith iteration
for a fixed Λi, the update equation for Λ is given as follows:

Λi+1 = (Λi − ηiGi)⊥ (A.5)

where ηi is the step size, Gi is the sub-gradient of the outer objective in (A.4) defined as Gi =
A+ ◦ (11T − xi1

T − 1xTi ) and ⊥ is the projection operator for any matrix P defined as P⊥ij =
{0 if Pij < 0, 1 if Pij > 1, and Pij otherwise} . We employ proximal gradient descent because it
scales gracefully, is amenable to recent advances in auto-differentiation tools, and fast convergence
[24]. We require few iterations ( 5-10) of proximal gradient descent and each inner optimization is
very fast because of strongly polynomial graph cut algorithms. Indeed, our experiments validate this
claim over multiple real-world benchmarks.

A.3 Additional experimental details and results

Algorithmic setup. For the sake of consistency, we convert all benchmark problems to minimization.
Note that this can be achieved by minimizing the negative of the original objective if the true goal
is to maximize the objective. We built our code on top of the open-source Python implementation
of BOCS 1. We employed the Boykov-Kolmogorov algorithm from graph-tool library 2 for solving
minimum graph cut formulation of the relaxed submodular acquisition function objective noting that
any minimum cut algorithm can be used to the same effect. We employed two initializations (random
and 11T /2) for optimizing Λ parameter within PSR noting that both gave similar results. We ran
proximal gradient descent procedure for a maximum of 10 iterations on all benchmarks and achieved
convergence. All the reported results are averaged over 10 random runs.

A.4 Benchmark description

1. Binary quadratic programming (BQP). The goal in binary quadratic programming (BQP) [2]
is to maximize a binary quadratic function with l1 regularization: maxx∈{0,1}n(xTQx − λ‖x‖1),

1https://github.com/baptistar/BOCS
2https://graph-tool.skewed.de/
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where Q is a randomly generated matrix defined as Hadamard product of two matrices (M and
K); Q = M ◦ K, where M ∈ Rn×n,Mij = N (0, 1), N (0, 1) stands for the standard Gaussian
distribution and K ∈ Rn×n,Kij = exp(−(i− j)2/α2), α is the correlation length parameter.

2. Contamination. This problem considers a food supply with n stages, where a binary {0,1}
decision (xi) must be made at each stage to prevent the food from being contaminated with pathogenic
micro-organisms [19]. Each prevention effort at stage i can be made to decrease the contamination by
a given random rate Γi and incurring a cost ci. The contamination spreads with a random rate Λi if no
prevention effort is taken. The overall goal is to ensure that the fraction of contaminated food at each
stage i does not exceed an upper limit Ui with probability at least 1− ε while minimizing the total
cost of all prevention efforts. Following [2], the lagrangian relaxation based problem formulation is
given below:

arg min
x

n∑
i=1

[
cixi +

ρ

T

T∑
k=1

1{Zk>Ui}

]
+ λ‖x‖1

where λ is a regularization coefficient, Zi is the fraction of contaminated food at stage i, violation
penalty coefficient ρ=1, and T=100.

3. Low auto-correlation binary sequences (LABS). The problem is to find a binary {+1,-1}
sequence S = (s1, s2, · · · , sn) of given length n that maximizes merit factor defined over a binary
sequence as given below:

Merit Factor(S) =
n2

E(S)
where E(S) =

n−1∑
k=1

(
n−k∑
i=1

sisi+k

)2

The LABS problem has multiple applications in diverse scientific disciplines including communica-
tions engineering where it is used in high-precision interplanetary radar measurements[26, 30].

4. Network optimization in multicore chips. Multi-core architectures are considered very promis-
ing for parallel computing [7] in lieu of Moore’s law aging quickly. Performance bottleneck due to
data movement is a key challenge in multicore research. One promising solution is to optimize the
placement of communication links between cores to facilitate efficient data transfer. The objective in
this domain is to optimize the placement of 17 communication links between 12 cores of a multi-core
architecture (66 binary variables) to facilitate efficient data transfer. This optimization is typically
guided by expensive simulators that mimics the real hardware. The network optimization problem is
part of the rodinia benchmark [9] and uses the gem5-GPU simulator [27]. There is one constraint
to determine valid structures: existence of a viable path between any pair of cores. We use a large
penalty on the objective value whenever this constraint is violated.

Other than the four benchmarks described in the main experimental section, we also evaluated the
proposed approach on another important benchmark which is described below.

5. Sparsification of zero-field Ising models (Ising). The distribution of a zero field Ising model p(z)
for z ∈ {−1, 1}n is characterized by a symmetric interaction matrix Jp whose support is represented
by a graph Gp = ([n], Ep) that satisfies (i, j) ∈ Ep if and only if Jpij 6= 0 holds [2]. The overall goal
in this problem is to find a close approximate distribution q(z) while minimizing the number of edges
in Eq . Therefore, the objective function in this case is a regularized KL-divergence between p and q
as given below:

DKL(p||qx) =
∑

(i,j)∈Ep

(Jpij − J
q
ij)Ep[zizj ] + log(Zq/Zp)

where Zq and Zp are partition functions corresponding to p and q respectively, and x ∈ {0, 1}Eq

is
the decision variable representing whether each edge is present in Eq or not. As evident from Figure
4 and 5, our proposed PSR algorithm requires significantly less computation time while improving
the quality of acquisition function optimization solution. Moreover, it also finds better overall BO
solution on this domain as well (Figure 6).

11



12 24 40
Number of input variables (dimension)

2

4

6

8

No
rm

al
ize

d 
AF

O 
tim

e 
w.

r.t
 P

SR

Ising ( = 0.001)
SDP
PSR

Figure 4: Results comparing PSR algorithm and SDP approach on average AFO time normalized
w.r.t PSR for the Ising benchmark.
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Figure 5: Results comparing the accuracy of the AF minimizers obtained by PSR and SDP approach
measured in terms of Average percent improvement in the AF objective over all iterations of the BO
procedure for the Ising benchmark.
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Figure 6: Results comparing BOCS with PSR algorithm and BOCS with SDP approach on best
function value achieved versus number of iterations for the Ising benchmark. The horizontal axis
(x-axis) depicts number of iterations while the vertical axis (y-axis) depicts the best function value.
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