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Abstract

In this brief paper we introduce Bayesian polynomial chaos, a Gaussian process
analogue to polynomial chaos. We argue why this Bayesian re-formulation of
polynomial chaos is necessary and then proceed to mathematically define it, fol-
lowed by an examination of its utility in computing moments and sensitivities;
multi-fidelity modelling, and information fusion.

1 Introduction & motivation

Over the past decade, polynomial chaos [1] has garnered significant industrial uptake within engi-
neering [2, 3, 4, 5]. Tailored as an approach to aleatory uncertainty quantification, its simplicity,
both expositional and practical, has cemented it as a must-have tool in many computational design,
health monitoring, and manufacturing workflows. At the expositional level, polynomial chaos re-
quires uncertain inputs to computational models be characterized by probability distributions. These
uncertainties are then propagated through the aforementioned models by non-intrusively (although
recipes for intrusive polynomial chaos exist within literature, see [6]) evaluating the model at different
input conditions, adhering to a design of experiment set by numerical quadrature rules, such as
Gauss-Christoffel, Clenshaw-Curtis, and many more—through tensorial, sparse grid [7, 8], least
squares [9] and compressive sensing [10] approaches. The objective of polynomial chaos tools
is to quantify the uncertainty in black-box model output quantities of interest (qois). In practical
terms, polynomial chaos affords relatively tractable estimates of the moments of output qois and
their sensitivities—through Sobol’ indices and related metrics. However, beyond its interpretability,
polynomial chaos is purpose-built for working with typically long running engineering models, e.g.,
computational fluid dynamics and finite elements solutions. Here output qois are by and large spatio-
temporal integrals of scalar fields, and input qois are boundary conditions or geometry parameters.
Functional representations between the model inputs and outputs are typically smooth and continuous
(even though the scalar fields themselves may exhibit discontinuities, e.g., shocks in Eulerian flow),
making them ideal candidates for polynomial approximations.

Research into polynomial chaos has been burgeoning with a focus on four distinct disciplines:
sampling methods and their underlying distributions [11]; curse of dimensionality alleviation via
dimension reduction [12]; tackling correlations in input parameters [13], and estimating higher-order
sensitivity information [14, 15]. Given the flurry of academic and industrial activity, it stands to
reason that any profound change in overarching methodology must be duly justified. So why a
Bayesian variant of polynomial chaos? First, over the past few years there has been a concentrated
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effort at quantifying the epistemic uncertainties in numerical simulations in both fluids [16] and
structures [17]. This has lead to a paradigm where a single evaluation of a black-box model for a
unique input yields a distribution for a chosen output qoi. Second, for most real-world problems,
numerical simulations are deployed on cases far more complex (e.g., jet engines and aircrafts) than the
canonical ones (e.g., scaled compressor rigs and scaled wind tunnel airfoil tests) used for validating
and calibrating their underlying equation systems. Thus, even in the absence of a rigorous framework
to quantify epistemic uncertainty, a naïve stratagem for expressing a modeler’s certainty in an output
qoi instance, can be conveyed through an assigned probability. This could arise from either changes
in convergence, or deviations from well-established validation cases (e.g., stall and transition). Third,
and perhaps more philosophically, when experimental data is available, it is typically used to set
boundary conditions and to gauge the utility of the numerical simulation tool. It is not used to
augment or supplement what happens between the boundaries. This approach, by design, thwarts
attempts to fuse sensor data with numerical simulations. We argue that a Bayesian approach can be
designed to rigorously combine experimental values and numerical solutions for delivering greater
inference; shedding more insight into the observed physical phenomenon.

In this paper, we introduce Bayesian polynomial chaos, a Gaussian process analogue to polynomial
chaos. It is effectively a Gaussian process with orthogonal polynomial kernels, which builds upon ad-
vances in both machine learning and uncertainty quantification. The remainder of this relatively short
paper is structured as follows. First, we present a mathematical treatment of Bayesian polynomial
chaos; its computation of moments; utility in multi-fidelity and sensor-fusion efforts. This exposition
is sprinkled with a few representative examples. We close this manuscript by elaborating on next
steps.

2 Bayesian polynomial chaos

2.1 Preliminaries

We consider the problem of approximating a function f(x) where x = (x(1), . . . , x(d)) is a point in
Rd. We assume that each of the d parameters in x are mutually independent random variables with
marginal distributions given by ρ1(x(1)), . . . , ρd(x(d)) respectively, yielding a joint density given by
ρ(x) = ρ1(x(1))× ρ2(x(2))× . . .× ρd(x(d)). In polynomial chaos parlance, ρ(x) characterises the
input uncertainty to the model f(x). As we typically do not have access to an analytical form for this
model, we approximate it with an orthogonal polynomial expansion

f (x) ≈ g (x) =

N∑
j=1

αjφj (x) , (1)

where αj are the unknown coefficients and φj(x) =
∏d

i=1 φ
(i)
j (x(i)) denotes the j-th basis term,

which in turn is given as a product of its composite univariate polynomials. We can express the
polynomial expansion in Eq. 1 as a parameterised matrix equation of the form

g (x) = V T (x)α, where V ij = φj (xi) and α =

 α1

...
αN

 , (2)

with V ∈ RM×N , where M corresponds to the number of model evaluations, i.e., we assume the
existence of discrete model evaluations in the form of input-output pairs {xk, fk}Mk=1.

A few further remarks on the the approximation in Eq. 1 are in order. Here the composition of each
multivariate polynomial is set by a multi-index set j = (j(1), . . . , j(d)) ∈ Nd

0 which determines which
univariate polynomial orders participate in the multivariate approximation in Eq. 1. Each univariate
polynomial satisfies the property∫

R
φ(i)a (x(i))φ

(i)
b (x(i))ρi(x

(i))dx(i) = δa,b, (3)

where δa,b is the Kronecker delta. Eq. 3 is a statement on the orthogonality of the composite
polynomials, the existence of which is guaranteed under certain mild technical conditions on ρi (see
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[18]). As we will see later, orthogonality plays an important role in polynomial chaos as it facilitates
easy computation of certain statistical moments. In fact, the fundamental tenet behind polynomial
chaos is that selecting orthogonal polynomials (and their corresponding weight functions) enables
exponential convergence in the estimation of output moments [1].

2.2 Representation as a Gaussian process

In our Bayesian analogue we think of g, the polynomial approximation, as a Gaussian process

g (x) ∼ N (µg (x) ,Σg (x,x′)) , (4)

defined entirely by µg and Σg, its mean and covariance functions respectively. We assume there
exists a prior on the polynomial coefficients that feed into this Bayesian polynomial, given by

p
(
α(0)

)
∼ N (µα(0) ,Σα(0)) , (5)

where µα(0) ∈ RN . Given a likelihood model of the form p(V Tα, ηI), where η is a small numerical
nugget, the posterior distribution p(µα,Σα) is defined via

Σα =

(
1

η2
V V T + Σ−1

α(0)

)−1
and µα = Σα

(
1

η2
V f + Σ−1

α(0)µα(0)

)
, (6)

where f = (f1, . . . , fM )T . The mean and covariance functions in Eq. 4 can then be computed to be

µg (x) = V T (x)µα and Σg (x,x′) = V (x)
T

ΣαV (x′) . (7)

The expressions above are a direct consequence of Bayes’ theorem and their detailed derivations can
be found in page 124 of [19].

2.3 Computing moments and sensitivities

One of the salient advantages of polynomial chaos is the relatively easy computation of moments and
sensitivities. For instance, the mean of the output qoi with respect to the prescribed input uncertainties
is given by the first coefficient of the polynomial approximation; the variance is given by the sum of
the squares of the remaining coefficients (see page 210 in [20]). For Bayesian polynomials, as defined
in Eq. 4, the moment computations are linear operators acting on the Gaussian process, yielding a
Gaussian distribution. The expectation is given by

E [g] =

∫
Rd

g (x)ρ (x) dx

∼ N
(∫

Rd

V T (x)µαρ (x) dx,

∫
Rd

∫
Rd

V T (x) ΣαV
T (x′)ρ (x)ρ (x′) dxdx′

)
,

(8)

where standard Gauss-Christoffel quadrature rules of appropriate order can be used to arrive at the
exact expressions. In a similar manner, we write the variance as

Var [g] =

∫
X
g2 (x) ρ (x) dx− (E [g])

2

∼ N

(∫
Rd

(
V T (x)µα

)2
ρ (x) dx−

[∫
Rd

V T (x)µαρ (x) dx

]2
,∫

Rd

∫
Rd

(
V T (x)

)2
Σα

(
V T (x′)

)2
ρ (x)ρ (x′) dxdx′

)
.

(9)

Expressions for conditional variances and the related Sobol’ indices can also be derived. For these,
one simply constrains terms in V corresponding to the dimension and order required.

Here too, numerical quadrature comes to the rescue making these seemingly unwieldy integrals
available exactly. Figure 1 demonstrates these expressions in action for a bivariate polynomial model
deployed on an aerodynamic problem: aleatory uncertainties in the turbulent-to-laminar viscosity
νt/ν ∼ U [1, 100] and turbulence intensity Ti ∼ N (10, 5) are injected into a computational fluid
dynamics (CFD) model of a turbine blade, where the impact on performance through its pressure
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Figure 1: Bayesian polynomial chaos applied on the LS89 turbine with two input aleatory uncertain-
ties: νt/ν and Ti.

loss Yp needs to be determined. We assume that owing to an underpinning epistemic uncertainty in
turbulence closures, each evaluation of the model has an uncertainty (standard deviation) of Y p±0.01.
The posterior polynomial mean and its standard deviation is shown in Figure 1 along with mean and
variance in Yp, obtained using Eqs. 8 and 9. A third order isotropic bivariate polynomial was used
with a tensor grid quadrature rule requiring a total of 16 CFD evaluations. It should be noted that the
posterior polynomial is robust to variations in the prior, as the former is entirely set by the model
uncertainty (Y p± 0.01) and the data, as the data is adequate to determine the unknown polynomial
coefficients. However, there are applications where this may not be permissible and greater reliance
on the prior may be necessary.

2.4 Multi-fidelity models and design of experiment

An opportunity for precisely this arises in multi-fidelity modeling paradigms. These are characterised
by computationally expensive high-fidelity models and relatively inexpensive low-fidelity models. In
literature, a common workflow is to approximate an error function between a high-fidelity model
output and its low-fidelity counterpart [21]; parsimoniously evaluating the high-fidelity model while
extensively sampling the low-fidelity one. Here we propose a different approach, one that arguably
carries greater resonance with a Bayesian viewpoint: we use the low-fidelity model’s posterior as
the prior (µα(0) ,Σα(0)) for the high-fidelity model. Then, we impute the posterior distribution for
the high-fidelity model by sequentially evaluating it at an appropriately selected point x∗. This
simple approach is more resistant to errors that are artefacts of numerical noise, as the model’s
underlying structure is preserved and propagated a level up. If the data contradicts the prior, then this
structure will also be revealed, albeit at the cost of more high-fidelity evaluations. Additionally, this
approach easily scales to an arbitrary number of levels, with the prospect of introducing additional
constraints into the prior (see forthcoming section). A conceptual illustration is shown in Figure 2 for
an underlying cubic model; the low-fidelity model has five evaluations, whilst the high-fidelity model
only has one. However, despite this, it still retains the same structure as the low-fidelity owing to its
imputed prior.

For cases where the varying models have different inputs—typically the higher the fidelity, the greater
d—subspace polynomials of the form V (CTx) can be constructed, where Cd×n with n < d can be
tailored to ensure that all polynomial models adhere to the same input space as the highest-fidelity
one. In cases where such spaces are simply infeasible to establish, a coregional approach [22] can
also be adopted at the cost of having a more complex covariance structure.

To identify new high-fidelity points, we design a optimisation strategy that maximises the marginal
likelihood, p(f |V , µα(0) ,Σα(0)) =

∫
p
(
f |V , µα, η2

)
p (µα|µα(0) ,Σα(0)) dµα. In standard Gaus-
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Figure 2: Illustration of a bi-fidelity model where the posterior of the low-fidelity model is used to
inform the prior of the high-fidelity model (left). An application of the design of experiment is shown
on the right.

sian process fashion, we express this objective as

minimise
x∗

R (x∗)

subject to R (x∗) =
M

2
log (2π) +

M

2
log |Σm|+

1

2
(f − µm)

T
Σ−1m (f − µm) ,

(10)

where the mean and covariance of the marginal likelihood are given by µm = V Tµα(0) and
Σm = η2I + V T Σα(0)V , where V is augmented with the extra row V i(x

∗). Gradients for Eq.
10 can be easily computed and returned with the objective for each new function call in a standard
gradient optimisation loop. We share a representative result in Figure 2 using scipy’s [23] SLSQP
algorithm.

2.5 Fusion of linear-operators

In some engineering applications, it is often easier to estimate integral-, differential-, or more
generally linear-operators L{·} of related qois than the required qoi itself. In line with earlier
remarks, this data need not arise from simulations but can even be from empirical observations. If
probabilistic descriptions of such data is known, then they can be used to constrain the space of
posterior polynomial distributions. We formalise this idea by considering the joint distribution(

g
L{g}

)
= N

([
µg

L{µg}

]
,

[
Σg (x,x′) L{Σg (x,x′)}

L {Σg (x,x′)}T L2 {Σg (x,x′)}

])
. (11)

We can then write the conditional distribution of the polynomial as g|L{g} using standard Gaussian
identities.

3 Conclusion and outlook

The goal of this brief has been to define Bayesian polynomial chaos, and to articulate how it can
enhance the engineer’s uncertainty quantification toolkit. Our work takes inspiration from Gaussian
processes and uses some of its underlying machinery to offer new vistas for what is effectively a
Bayesian perspective of polynomial chaos. For the workshop, we will be sharing data and code,
with a focus on applications within the remit of experimental aerodynamics and computational fluid
dynamics.
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