
Robotic gripper design with Evolutionary Strategies
and Graph Element Networks

Ferran Alet∗ Maria Bauza∗ Adarsh K. Jeewajee∗ Max Thomsen∗

Alberto Rodriguez Leslie Pack Kaelbling

Tomás Lozano-Pérez
MIT

{alet,bauza,jaks19,mthomsen,albertor,lpk,tlp}mit.edu

Abstract

Robots are increasingly pervasive in manufacturing. However, most robotic grip-
pers are still simple parallel-jaw grippers with flat fingers, which for many objects
leads to sub-optimal manipulations. One way to solve this problem relies on having
engineers design a new gripper for every object, however, this is expensive and in-
efficient. We instead propose to automatically design them using machine learning.
First, we use evolutionary strategies in simulation to get a good initial gripper. We
pair this approach with an automatic curriculum method that increases the difficulty
of the manipulation task to ease the design process. Once the gripper is designed
in simulation we propose to fine-tune it via back-propagation on a Graph Neural
Network model trained on real data for many grippers and objects. By sharing
real-world data across grippers and objects we can be more data-efficient in the real
world. We show that our method improves the default flat gripper by significant
margins on multiple datasets of varied objects.

1 Introduction

Many robotic applications in the industry involve picking and placing objects at fast speeds and with
high reliability. However, in contrast to human hands, which can adjust to every object, most robots
only have parallel-jaw grippers with a single degree of actuation. This highlights the importance of
customizing the finger morphology to account for the properties of the manipulated object such as
size, shape, weight, and texture. However, currently, gripper design is mostly manual: when a factory
has to accommodate a new piece into the production pipeline, someone is tasked to design a custom
gripper (which is slow and expensive). Otherwise, the automated solution is likely to use a sub-optimal
default gripper, which hinders the efficiency and the flexibility of the manufacturing pipeline.

In this work, we propose to automate the design of new grippers by combining evolutionary search
in simulation with meta-learned adaptation from small amounts of real data. Given an object or a
collection of objects, we can design a gripper to increase the probability of correctly performing a
given primitive. We exemplify that when the task considered is robust picking.

In particular, our contributions are:

1. We use Evolutionary Strategies in simulation to optimize grippers in a wide variety of
scenarios. By using a simple model-free method, our approach can apply to many different
objects and primitives.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.
∗ these authors contributed equally; sorted alphabetically.



2. We leverage curriculum learning techniques to design grippers for hard tasks on which the
original gripper fails or is far from solving the final task. By slowly increasing the difficulty
of the task, we can get enough signal to enable Evolutionary Strategies to make progress.

3. We achieve data-efficiency in the real world by fine-tuning grippers on gradients coming
from a meta-learned Graph Element Network. This approach allows us to leverage all the
data generated in simulation while remaining data-efficient in the real world.

2 Related work

There have been multiple works on shape optimization for contact in the robotics community, such as
optimizing the fence of a conveyor belt to reorient objects [1] or end-effector shapes for 1 degree-of-
freedom actuators [2, 3]. In these works, authors assume that motions are quasi-static, and reduce
the problem to solving a differential equation. There have also been analytical approaches to gear
design [4], use optimization to solve trajectory planning through contact [5], and designing trajectory
and shape in tandem for 1-D throwers [6]. In contrast to these theoretical works, our approach does
not rely on an explicit model of the world, allowing us to design grippers in more varied and complex
situations.

There have also been computer-based morphology designs back from the pioneering work of Karl
Sims [7], who efficiently evolved virtual creatures to swim, jump, run or compete from a cube.
Chenney et al. [8] later optimized soft robots made from different materials to move them in
simulated environments. More recently, [9] used reinforcement learning to co-optimize policy and
morphology in creatures moving in simulated environments. Pathak et al. also used graph neural
networks and reinforcement learning to train a collection of self-assembling robots [10] as well as a
policy that worked well across many morphologies [11]. In contrast to these works, whose creatures
are relatively low resolution, we optimize finger meshes where both the design and the task are very
detail-sensitive. Moreover, we care about bringing the designs to the real world, which forces our
approach to be data-efficient.

Recently, machine learning has also been used for design in robotics. Liao et al. [12] use Batched
Bayesian Optimization to design micro-robots; however, the approach heavily restricts the number of
variables they can optimize, describing the morphology with only 3 variables. Closer to our work,
Wang et al. [13] designed a set of objects that are extremely hard to grasp for regular grippers. Their
approach relies on combining an analytical model with GANs [14] to generate objects that are close
to a specific given object while being much harder to grasp. Their motivation is related to ours, but
can only tackle grasping and not arbitrary primitives. However, while they only focus on a single
object for a single gripper, our method also tackles the case where a gripper has to work with a
collection of objects and primitives.

Graph Neural Networks [15, 16, 17] have been already applied to design problems, most notably in
molecule design [18, 19], with edges describing chemical bonds. Closer to our work, GNNs have
also been applied to designing the structure of buildings [20], with edges defined by beams and
columns. In contrast to both works, we optimize meshes and leverage a meta-learning approach to be
data-efficient in the real world (a problem that neither method addresses).

Finally, our goal is similar to the concurrent work from Ha et al. [21] that uses a generative network
that, given the mesh of the object to grasp, produces a gripper. In contrast, we use evolutionary
strategies, which is computationally slower, but can easily optimize a single gripper for multiple
objects. In [21], they also use an evaluation network for the grasps, similar to our use of GENs.
However, they only use it at training-time in simulation to propagate gradients back to the generative
network. We instead use it to fine-tune our gripper to the real-world dynamics.

3 Method
3.1 Evolutionary Strategies

We start with the default parallel-jaw gripper with planar fingers used in most mid-size robots. We
then collect multiple datasets of objects and resize them appropriately so that they have at least one
direction that fits within the gripper. This step allows us to have a diverse dataset of objects (including
even chairs) without having to worry about their original graspability. Next, we simulate grasps on
the pybullet engine [22]. For each grasp, we first place the object at a random orientation (conditioned

2



Figure 1: Example of the design setup in simulation. We simulate different grippers grasping a
diverse set of object objects at multiple angles. We record whether each gripper manages to perform
the grasp and whether the object remains stable after the gripper moves up and shakes.

on fitting inside the gripper), move down the gripper vertically, close its fingers, move up enough to
lift the object completely from the floor, and shake the gripper; all in an open-loop sequence. For
each grasp, we can record at any point in time if the grasp is succeeding by checking whether the
gripper is opened or closed.

Given the simulated data, we run CMA-ES [23] to optimize the grippers. First, we take a series of
points representing the original mesh and repeatedly add noise to the current mesh and obtain a new
mesh by taking a weighted mean of the randomized grippers, weighted according to their simulated
success metric. In our case, we compute success by adding whether the gripper managed to grasp the
object, and whether the grasp was stable under shaking. However, we note that our approach is not
limited to grasping, and can be applied to other manipulation primitives as long as their success can
be automatically assessed on the simulator.

3.2 Automated curriculum design
In machine learning, it has often been observed that, when learning a very complex task, it helps to
create a curriculum for the learner [24]. Most relevant to our case, curriculum learning has been used
with domain randomization for learning to manipulate a Rubik’s cube [25], by slowly increasing
the amount of randomization faced by the policy. In our case, we can apply the curriculum to our
design problem by taking into account that if a gripper is far from solving the primitive, there will
be no local improvement that can guide CMA-ES towards a better gripper.

Therefore, we propose to parametrize the manipulation primitive and create an automated curriculum
that goes from simple tasks to the desired one. For now, we assume there is a single parameter d that
describes the difficulty of the task and goes from 0 to D. We also assume that performance on the
task, for a fixed gripper, is monotonically decreasing with d. In our case d parametrizes the speed of
the gripper shake so that 0 implies no shaking and higher d implies higher shaking speed, making it
harder for the grasp to remain stable.

Typically, automatic curricula aim at increasing the difficulty of the task while maintaining a fixed
level of success. However, this does not align with our objective: we want to maximize success for a
given task difficulty, not difficulty given a fixed success. However, we do not know how often we
will solve a task at the desired difficulty, d, i.e. we do not know what is the probability of solving
a given task. This can prevent us from performing an effective curriculum because if we set the
target probability too low we will quickly reach the target task difficulty D but at an underwhelming
performance. Instead, if we set the task success probability too high, we might get stuck training at a
different difficulty d < D than the desired.

A simple, yet effective, approach to mitigate this issue is to start with a target success probability
of p = 0 and have a simple controller that regulates d to keep p constant. While the gripper gets
optimized, this controller will eventually lead to d = D. To keep improving after reaching d = D,
we increase the target success p, making the controller automatically decrease d to ensure that the
new target probability is satisfied. As a result, we keep arriving at the target difficulty D with an
increasing amount of success until, at some point, we cannot increase it further.

3.3 Graph Element Networks for data-efficient design

While simple, CMA-ES has the problem of being hopelessly data-inefficient. Before obtaining a
useful parameter update, it needs to try many gripper variations. However, in practice, we would

3



Figure 2: Success metric, accounting for both grasping and shake stability. We evaluate the neutral
gripper, the ES gripper, and the curriculum learning gripper on multiple datasets. We can see that
ES and CL perform significantly better than the neutral gripper for all tasks. Curriculum learning
often leads to big gains, although on some occasions it performs slightly worse than not using it.
Adversarial objects were designed in [13].

like to 3-D print grippers and have them be effective in the real world. We thus need a data-efficient
approach both in terms of data collection and the number of different grippers created.

We leverage Graph Element Networks [26](GENs), which take in any spatial function described with
a set of sampled points in the 3D space, and return another function (in our case, a single scalar).
GENs work by first creating a spatial mesh around the region of interest, and mapping the input
points to the mesh via attention. Once the input points are embedded in the mesh, we treat the mesh
as a regular graph neural network and perform message-passing propagation [27]. After message
passing, we can query any point in the space by again using attention mechanisms to turn it into a
few queries into the mesh. GENs have been used to model Partial Differential Equations and, more
relevant to our setting, predicting the result of a robot pushing a planar object.

Also relevant to our setting, we showed that we can fine-tune the meshes with few data and increase
the accuracy of the predictions made by the GENs, by focusing the mesh computation where it is
most needed. This affects the node positions without modifying the GEN weights, which are the bulk
of the parameters and the computation. This adaptation can be done because GENs are end-to-end
differentiable and thus we can train the position of the mesh nodes via back-propagation. Given
a grasp, the input spatial functions are the point-clouds of the gripper and object (appropriately
rotated). We then train the GEN to predict the result of the grasp (and its success after shaking).
In practice, we train the GEN using many (gripper, object) pairs, with grippers coming from those
found by CMA-ES. As a result, the GEN provides a differentiable approximation to our simulator.
This allows us to optimize the gripper mesh by maximizing the probability of success predicted by
the GEN w.r.t. the input gripper mesh.

For an unseen collection of objects and manipulation tasks in the real world, we would like to
use back-propagation through GENs since it is very data-efficient. However, back-propagating a
model w.r.t. its input typically leads to overly optimistic results, a phenomenon well observed in
model-based RL and similar to that of adversarial examples [28]. To avoid relying too much on the
back-propagation, we can perform most of the gripper optimization in simulation using CMA-ES.
Then, to bridge the reality gap between simulation and real-world, we fine-tune both the GEN and
the input-mesh on a small amount of real data. Note that the GEN itself can pool real data from
many different real grippers and objects. This allows us to design a better version of the grippers
efficiently, as GENs have learned a good model from prior tasks; analogous to the meta-learning
setting [29, 30, 31, 32].

4



Figure 3: Comparison of designed grippers with default grippers. Designed grippers tend to have
rugosity and external protuberances on the bottom to help funnel and lift the objects. There are also
differences between grippers trained on different sets of objects, as they adapt to the characteristics
of each set.

4 Experiments

Our current experiments involve CMA-ES in simulation, as well as training GENs on the simulated
data coming from many different grippers and objects. We plan to 3D print and test these grippers in
the real world, once the coronavirus situation allows it.

Figure 2 shows how we can reliably improve the success of the neutral gripper across all datasets.
Notably, Xboxes perform very poorly and boxes perform very well; this is mainly due to boxes being
in a vertical configuration and Xboxes being flat on the floor. Figure 3 shows the grippers for both
boxes and Xboxes, and their difference w.r.t. to the original gripper.

Curriculum learning also helps in almost all circumstances, with a 200% gain on the fruits dataset.
For two of the datasets, the success decreases. We believe this happens because learnability and
success are related, but not identical. Sometimes it can be easier to learn a gripper in a hard, but
discriminative task, than an easier but less-discriminative one. We do observe, however, that the
decreases are very minor and curriculum design is useful overall.

We also successfully trained a Graph Element Network on data coming from CMA-ES, predicting
grasp success with 72% accuracy for new grippers and 90% for known grippers and new objects;
while training on 300 different bottles and more than 50 grippers simultaneously. These results make
us optimistic that we will be able to leverage the GENs to fine-tune grippers in the real world.

5 Conclusion

We have shown a method for automatically designing new grippers combining ideas from evolutionary
strategies, curriculum learning, and graph neural networks. This allows us to generate promising
grippers in simulation and fine-tune them in the real world in a data-efficient manner. Our method
has direct applications in the industry, where robots are increasingly pervasive, but deploying them
still requires a lot of effort. By automating part of the design process, we can lower the cost of setting
a new robot chain, making manufactured products cheaper.

5



References

[1] M Brokowski, M Peshkin, and Kenneth Goldberg. Optimal curved fences for part alignment on
a belt. 1995.

[2] Alberto Rodriguez and Matthew T Mason. Grasp invariance. The International Journal of
Robotics Research, 31(2):236–248, 2012.

[3] Alberto Rodriguez and Matthew T Mason. Effector form design for 1dof planar actuation. In
2013 IEEE International Conference on Robotics and Automation, pages 349–356. IEEE, 2013.

[4] Jen-Yu Liu and Yen-Chuan Chen. A design for the pitch curve of noncircular gears with function
generation. In Proceedings of the international multiconference of engineers and computer
scientists, volume 2, 2008.

[5] Michael Posa, Cecilia Cantu, and Russ Tedrake. A direct method for trajectory optimization
of rigid bodies through contact. The International Journal of Robotics Research, 33(1):69–81,
2014.

[6] Orion Taylor and Alberto Rodriguez. Optimal shape and motion planning for dynamic planar
manipulation. Autonomous Robots, 43(2):327–344, 2019.

[7] Karl Sims. Evolving virtual creatures. In Proceedings of the 21st annual conference on
Computer graphics and interactive techniques, pages 15–22. ACM, 1994.

[8] Nick Cheney, Robert MacCurdy, Jeff Clune, and Hod Lipson. Unshackling evolution: evolving
soft robots with multiple materials and a powerful generative encoding. In Proceedings of the
15th annual conference on Genetic and evolutionary computation, pages 167–174, 2013.

[9] David Ha. Reinforcement learning for improving agent design. Artificial life, 25(4):352–365,
2019.

[10] Deepak Pathak, Christopher Lu, Trevor Darrell, Phillip Isola, and Alexei A Efros. Learning to
control self-assembling morphologies: a study of generalization via modularity. In Advances in
Neural Information Processing Systems, pages 2295–2305, 2019.

[11] Wenlong Huang, Igor Mordatch, and Deepak Pathak. One policy to control them all: Shared
modular policies for agent-agnostic control. arXiv preprint arXiv:2007.04976, 2020.

[12] Thomas Liao, Grant Wang, Brian Yang, Rene Lee, Kristofer Pister, Sergey Levine, and Roberto
Calandra. Data-efficient learning of morphology and controller for a microrobot. arXiv preprint
arXiv:1905.01334, 2019.

[13] David Wang, David Tseng, Pusong Li, Yiding Jiang, Menglong Guo, Michael Danielczuk,
Jeffrey Mahler, Jeffrey Ichnowski, and Ken Goldberg. Adversarial grasp objects.

[14] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in neural
information processing systems, pages 2672–2680, 2014.

[15] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini.
The graph neural network model. IEEE Transactions on Neural Networks, 20(1):61–80, 2009.

[16] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907, 2016.

[17] Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius
Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan
Faulkner, et al. Relational inductive biases, deep learning, and graph networks. arXiv preprint
arXiv:1806.01261, 2018.

[18] Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Junction tree variational autoencoder for
molecular graph generation. arXiv preprint arXiv:1802.04364, 2018.

[19] Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Hierarchical generation of molecular
graphs using structural motifs. arXiv preprint arXiv:2002.03230, 2020.

[20] Kai-Hung Chang and Chin-Yi Cheng. Learning to simulate and design for structural engineering.
arXiv preprint arXiv:2003.09103, 2020.

[21] Huy Ha, Shubham Agrawal, and Shuran Song. Fit2Form: 3D generative model for robot gripper
form design. In Conference on Robotic Learning (CoRL), 2020.

6



[22] Erwin Coumans and Yunfei Bai. Pybullet, a python module for physics simulation for games,
robotics and machine learning. 2016.

[23] Nikolaus Hansen. The cma evolution strategy: A tutorial. arXiv preprint arXiv:1604.00772,
2016.

[24] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning.
In Proceedings of the 26th annual international conference on machine learning, pages 41–48,
2009.

[25] Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, Mateusz Litwin, Bob McGrew, Arthur
Petron, Alex Paino, Matthias Plappert, Glenn Powell, Raphael Ribas, et al. Solving rubik’s cube
with a robot hand. arXiv preprint arXiv:1910.07113, 2019.

[26] Ferran Alet, Adarsh Keshav Jeewajee, Maria Bauza Villalonga, Alberto Rodriguez, Tomas
Lozano-Perez, and Leslie Kaelbling. Graph element networks: adaptive, structured computation
and memory. In International Conference on Machine Learning, pages 212–222, 2019.

[27] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. arXiv preprint arXiv:1704.01212, 2017.

[28] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083,
2017.

[29] Jürgen Schmidhuber. Evolutionary principles in self-referential learning, or on learning how to
learn: the meta-meta-... hook. PhD thesis, Technische Universität München, 1987.

[30] Samy Bengio, Yoshua Bengio, and Jocelyn Cloutier. On the search for new learning rules for
anns. Neural Processing Letters, 2(4):26–30, 1995.

[31] Sebastian Thrun and Lorien Pratt. Learning to learn. Springer Science & Business Media,
1998.

[32] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adapta-
tion of deep networks. arXiv preprint arXiv:1703.03400, 2017.

7


	Introduction
	Related work
	Method
	Evolutionary Strategies
	Automated curriculum design
	Graph Element Networks for data-efficient design

	Experiments
	Conclusion

