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Abstract

Lithium-Ion (Li-I) batteries have recently become pervasive and are used in many
physical assets. To enable a good prediction of the end of discharge of batteries,
detailed electrochemical Li-I battery models have been developed. Their parame-
ters are typically calibrated before they are taken into operation and are typically
not re-calibrated during operation. However, since battery performance is affected
by aging, the reality gap between the computational battery models and the real
physical systems leads to inaccurate predictions. A supervised machine learning
algorithm would require an extensive representative training dataset mapping the
observation to the ground truth calibration parameters. This may be infeasible
for many practical applications. In this paper, we implement a Reinforcement
Learning-based framework for reliably and efficiently inferring calibration pa-
rameters of battery models. The framework enables real-time inference of the
computational model parameters in order to compensate the reality-gap from the
observations. Most importantly, the proposed methodology does not need any
labeled data samples, (samples of observations and the ground truth calibration
parameters). Furthermore, the framework does not require any information on the
underlying physical model.The experimental results demonstrate that the proposed
methodology is capable of inferring the model parameters with high accuracy and
high robustness. While the achieved results are comparable to those obtained with
supervised machine learning, they do not rely on the ground truth information
during training.

1 Introduction

Recent advancements in Li-I batteries have increased their usage in various applications ranging
from electric vehicles to drones and space exploration. Particularly for autonomous systems, it is
essential to plan the missions reliably which requires an accurate prediction of the End-of-Discharge
(EOD) time for the batteries. However, the currently available battery models [1] suffer from an
increasing uncertainty in their EOD predictions over time. This is mainly due to the degradation
processes in the battery. The relationship between battery age and the discharge time is non-linear.
Hence, sophisticated modeling techniques are required to estimate Battery Degradation Parameters
that would be required for the EOD time prediction.

Previous work on Battery aging [2–5] have focused on the understanding of the aging process. Some
data-driven methods based on empirical, probabilistic, and learning-based models [6–9] have been
proposed for Battery End-of-Life (EOL) prediction or State of Health (SOH) determination. However,
these methods suffer from a strong dependence on labeled data, or are computationally expensive.
These shortcomings limit their applicability in many real-world problems.

Battery aging models enable to track the aging process over time. The model parameters are then
inferred from the empirical observations. This is also referred to as model calibration. Previous
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works have focused on traditional approaches like Kalman Filter [9, 10], Particle Filter [6], or explicit
degradation models (Model-Based Prognostics) [7]. Kalman Filter and Particle Filter approaches do
not require an underlying model, however suffer from a high computational burden during application
time. Model-Based approaches assume the underlying model of the aging process. In this work, we
solve the Battery Model Calibration process using Reinforcement Learning (RL) method, which can
work in real-time and does not require an underlying model.

Recent developments in model-free Reinforcement Learning have been applied to various control
problems in Robotics [11–14], Water Systems management [15], Computational Biology [16], and
AutoML[17]. Model-free RL methods have multiple advantages over traditional methods: (1)
RL framework is highly general, the agent can learn to solve tasks without any knowledge of the
underlying model. In our case, the agent can learn to calibrate the underlying parameters without
any labeled data. (2) The policy learned via RL is robust to model uncertainty. (3) RL methods
provide almost real-time performance since it only requires to evaluate the learned policy. Hence,
Reinforcement Learning is a compelling alternative to other data-driven methods for Battery Model
Calibration.

In this work, we propose to define the Battery Calibration problem as a tracking problem defined
by a Markov Decision Process (MDP) and solve it with the Lyapunov-based Maximum-Entropy
Reinforcement Learning algorithm. Specifically, we use Lyapunov-based Actor-Critic (LAC) method
[18, 19] to provide stable tracking of the parameters. We use the Battery Model from the NASA
prognostic model library [20, 21] to simulate our RL environment. It is important to clarify that this
library models the physical process of the discharge but not the battery aging process, which is our
main focus here. To the best of our knowledge, ours is the first method applying Reinforcement
Learning for the battery model calibration 1.

2 Related Work

Model Calibration is essential in many engineering applications relying on simulations. As most
of the systems undergo changes over time, physical model parameters need to be re-calibrated. If
possible, this calibration process can be done offline by applying a reference loading condition and
correlating the observed output with the expected one. However, in situations where it is not possible
to calibrate the systems offline, online calibration is crucial.

For operational purposes of Batteries, it is important to have an accurate estimate of the EOD time.
There are accurate discharge models for Li-I batteries [20]. These models work based on the physical
principles of the discharge process. However, such models are not able to estimate the degradation
parameters of the Battery that change over time, and hence battery model real-time calibration
becomes essential.

There are three primary ways to assess Battery degradation parameters. (1) Direct estimation from
observations (2) Bayesian Tracking principle (3) Model-Based Prognostics based on an explicit aging
model.

Firstly, in direct estimation methods, observations are used to learn the mapping from the battery
outputs to the degradation parameters. For, example authors in [8] used Support Vector Machine
(SVM) model to learn this mapping. There are approaches that use Structured Neural Networks
(SNN) [9] to exploit knowledge of the degradation process. Such approaches show promising results
in certain scenarios where we can obtain paired samples of observations and degradation parameters.

Secondly, Methods based on Unscented Kalman Filter (UKF) [10] tracks the internal battery state to
reduce the observation gap between predicted and actual output. Similar to this, Extended Kalman
Filter (EKF) [9] also tracks the internal state of the battery but with a different model for the discharge
process. Such tracking algorithms provide model-agnostic parameter estimation. However, these
methods are computationally expensive at the application time and suffer from a drift in parameter
tracking.

Thirdly, model-based prognostic methods assume an underlying degradation model for the aging
parameters as the function of its usage. Authors in [7] used system identification techniques to
estimate the parameters of the degradation model. These techniques provide accurate estimates

1In this work we use “Model Calibration” and “Degradation Parameter Estimation” terms interchangeably
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as long as the physical degradation process follows the assumed model. Reinforcement Learning
provides an alternative solution to these approaches while relaxing some of the constraints. Especially,
in the scenarios where labeled data is not available, RL can learn from the observations and infer the
model parameters.

With deep function approximators and sophisticated exploration techniques, Reinforcement Learning
methods have made some significant progress in recent times. In our work, we focus on model-
free RL methods based on Actor-Critic (AC) approach [22, 23]. Actor-Critic methods provide a
framework for generalized policy iteration algorithms in which two networks (Actor and Critic) are
updated continuously. Especially, Maximum Entropy-based RL formulation such as Soft Actor-Critic
(SAC) [24, 25] algorithms have shown good performance in different applications [26, 27]. Chao
et al. [28] applied a variant of the Maximum Entropy-based RL algorithm for model calibration of
Turbofan Engines. In this work, the authors proposed the Lyapunov-Based Critic which to some
extent provides stability guarantees which are essential for non-linear dynamical systems. We follow
this approach here, by formulating Battery Model Calibration as the tracking problem.

3 Method

3.1 Battery Discharge Model

We follow Li-I Battery Model from NASA Prognostic Model Library [20, 21]. It captures significant
electro-chemical processes of the discharge and also models the effect of aging in terms of degradation
parameters. However, the model needs to be provided with degradation parameters for accurate
estimation of EOD time. The battery state is modeled by seven parameters, and changes over time
as a function of input load and degradation state. Here, we just denote the state mathematically and
refer the readers to the original paper [20] for the physical meaning of these parameters.

x(t) = [qs,p qb,p qb,n qs,n V
′

o V
′

η,p V
′

η,n] (1)

The input load at time t is w(t), and the model predicts the voltage y(t) = V .

There are two main degradation parameters: (a) qmax captures the decrease in active Lithium ions,
and (b) Ro captures the increase in internal resistance. These parameters are essential for the model
dynamics, that are defined as follows:

x(t+ 1) = f(x(t),w(t), qmax, Ro)

y(t+ 1) = f(x(t+ 1), qmax, Ro)
(2)

Without any knowledge of the battery age, degradation parameters are initialized to “perfect battery”
condition values, which are qmax = 7600, and Ro = 0.117215. Using these parameters, the model
can estimate the initial state x(0). As the battery ages, qmax decreases while Ro increases. We try to
infer these parameters by solving the state-tracking problem using RL. Here, we use the physics-based
battery model as our Reinforcement Learning environment. However, in cases where such a model is
difficult to obtain, it can be replaced by function approximators or surrogate models.

3.2 Markov Decision Process and Reinforcement Learning

In this paper, we focus on the battery state tracking task which is modeled by a Markov decision
process (MDP). An MDP can be described as a tuple, (S,A, c, P, ρ), where S is the set of states, A
is the set of actions, c(s, a) ∈ [0,∞) is the cost function,and P (s′|s, a) is the transition probability
function, and ρ(s) is the starting state distribution. π(a|s) is a policy denoting the probability of
selecting action a in state s. The state of a system at time t is given by the state st ∈ S ⊆ Rn,
where S denotes the state space. For our tracking strategy, we define the state at time t as st =
[x̂t,xt+1,ut+1]. Where, x̂t is the model predicted battery internal state and xt+1 is the real Battery
state as described in eq.(1). The agent(calibrator) then controls the system’s degradation parameters
as an action at ∈ A ⊆ Rm (e.g, at = qmax or Ro) according to the policy π(at|st), and resulting in
the next state st+1. The transition of the state is computed by the battery model. The cost function
c(st, at) = ||x̂t+1 − xt+1|| is a feedback signal to the agent.
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Our RL algorithm aims to find a policy π which minimizes Jc(π)
.
= Eτ∼π

∑∞
t=0 γ

tc(st, at). Here,
γ ∈ [0, 1) is the discount factor, τ denotes a trajectory (τ = (s0, a0, s1, ...)), and τ ∼ π is shorthand
for indicating that the distribution over trajectories depends on π: s0 ∼ ρ, at ∼ π(·|st), st+1 ∼
P (·|st, at).

3.3 Lyapunov-based actor-critic

Since we target the state tracking task, we adopted the Lyapunov-based Actor-Critic (LAC). LAC
has been proved to be able to learn policies with guaranteed stability, which is more capable and
favorable of handling uncertainties compared to those without such guarantees in nonlinear control
problems. Besides, LAC is based on the actor-critic maximum entropy framework [24], which can
enhance the exploration of the policy and has been shown to substantially improve the robustness
of the learned policy [24]. LAC contains a Lyapunov critic function and a policy network. The
Lyapunov critic plays an important role in both stability analysis and the learning of the actor. In
view of the requirements in the LAC, we parameterized the Lyapunov candidate function as Lφc and
construct the Lyapunov candidate by L(s, a) = c+maxa′ γL(s

′, a′). During training, Lφc is updated
to minimize the following objective function,

J(Lc) = E(s,a)∼D

[
1

2
(Lc(s, a)− Ltargetc (s, a))2

]
(3)

where Ltarget is the approximation target related to the chosen Lyapunov candidate and D is the set
of collected transition pairs. The approximation target is given by,

Ltargetc = c+max
a′

γLφc (s
′, a′) (4)

Then, based on the maximum entropy actor-critic framework, it uses the Lyapunov critic function in
the policy gradient formulation. First, the objective of the policy network is summarized as follows:

J(π) =ED[β[log(πθ(fθ(ε, s)|s))] + λ(Lc((s
′, fθ(ε, s

′))− Lc(s, a) + α3c)] (5)

where πθ is the policy parameterized by a neural network fθ, and ε is an input vector consisting of
Gaussian noise. The D .

= {(s, a, s′, c)} is the replay buffer for storage of the MDP tuples. In the
above objective, β and γ are positive Lagrange multipliers that control the relative importance of
policy entropy versus the stability guarantee. And α3 is a constant for lyapunov energy decreasing
objective. As in [29], the entropy of policy is expected to remain above the target entropyHt. The
values of β and λ are adjusted through gradient method, thereby maximizing the objective:

J(β) = βE(s,a)∼D[log(πθ(a|s)) +Ht] (6)

and the λ is adjusted by the gradient method, thus maximizing the objective:

J(λ) = λ(Lc((s
′, fθ(ε, s

′))− Lc(s, a) + α3c) (7)

3.4 Direct Mapping

We also consider a simple fully connected neural network to learn a direct mapping from state st
to the degradation parameters (at in RL setting). However, this is a much simpler problem since it
learns from the labelled pairs of "states" and "degradation parameters", which might not be easy to
obtain in certain scenario (for every pairs of states and the underlying degradation, the assets need to
be measured manually, which is considerable time consuming). Furthermore, the training dataset is
required to be representative and cover all the different combinations to enable a reliable ML model.
Also, in this setting state st is formulated as st = [xt,xt+1,ut+1], and hence both xt and xt+1

are real states. On the other hand, with RL parameter tracking formulation, we do not need such
labelled training samples since an actor learns purely based on the rewards observed. Hence, we treat
the results obtained with this supervised learning setup as an upper bound for our RL framework
performance.
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Figure 1: Battery model parameter calibration with RL

4 Experiments

4.1 Datasets and Model architecture

We use the battery model from NASA Prognostic model library [21] to generate simulated data for our
training process. As discussed earlier, we have two degradation parameters to calibrate in a battery
model. We generate 5500 trajectories for each degradation parameter by varying the parameter value
and load condition within a certain range. We consider each parameter degradation independently,
hence, while varying one parameter, we keep the other one constant. Following the approach of [7],
we keep degradation parameters constant for a given discharge cycle. Also, we are assuming here
that we the future battery load conditions are known for a discharge trajectory.

We use a fully connected neural network as a function approximator for our actor fθ and Lyapunov
critic, Lc. Both networks have 3 fully connected layers with 256 neurons each and LeakyReLU [30]
activation functions. For the policy network, we predict two values, mean and std, for each action.
After this step, we use the squashed Gaussian policy [24] to sample from the distribution. To ensure
that the Lyapunov values are positive, we use the sum-of-square of the final layer activations of the
Lyapunov network as Lyapunov values. The parameters β and λ are also updated by using the loss
defined in Eq.(6) and Eq.(7). We use Adam optimizer with the learning rate 5x10-4.

For the Direct Mapping experiment, we use the same architecture as the policy network with the
difference that only one output per action is learned since standard deviation is not required. We use
the same optimizer and hyper-parameters as described above.

4.2 Results

For model evaluation, we divide the dataset randomly in 70% training and 30% testing data We train
RL model for one million steps while the direct mapping model has been trained for 30 epochs.

4.2.1 RL Calibration

We compare the inference accuracy of our RL-based approach with the direct mapping approach. As
discussed earlier, direct mapping takes the labeled training pairs and hence, is expected to perform
better than the indirect inference RL method. Inference trajectories of the degradation parameters are
shown in Fig. (1). Even though there is some variance in the inference of the parameter qmax, we can
see that most of the points are close to the true parameters, while in the case of Ro, tracking works
perfectly. We can observe bias in the direct mapping for Ro parameter Fig.(2b). The bias is much
worse than the one in the indirect RL inference. Hence, the performance of the RL method is either
comparable or better as the direct mapping algorithm. This competitive performance is achieved
while purely learning from the interactions and without any access to the ground truth.
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Figure 2: Direct Mapping of Battery state to degradation parameters

5 Conclusion

In this paper, we present a new approach for the Battery model-calibration as a tracking problem. We
solve this tracking problem by Lyapunov-based maximum entropy RL framework and show that the
inference of this model provides accurate estimates of the model parameters. The performance of
the RL framework is comparable to the supervised learning algorithm which requires labeled pairs
of state observations and degradation parameters. The indirect inference as performed by the RL
algorithm is a much much harder learning problem. Therefore, we propose a valid alternative for the
scenarios where training data is limited.

In the future, this method can be extended in the scenarios where the internal state of the model
is not easy to obtain. For such cases, we can formulate the problem as a problem of tracking the
output voltage. This is a much harder problem compared to the one analyzed here since RL has
to learn the internal discharge model along with the degradation process purely from the observed
rewards. Furthermore, in the current case study, we observed some variance in the inference of the
parameter qmax. To tackle this, we can add a consistency penalty loss if two consecutive actions differ
significantly.
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