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Abstract

Sequential assembly with geometric primitives has drawn attention in robotics
and 3D vision since it yields a practical blueprint to construct a target shape.
However, due to its combinatorial property, a greedy method falls short of gen-
erating a sequence of volumetric primitives. To alleviate this consequence in-
duced by a huge number of feasible combinations, we propose a combinato-
rial 3D shape generation framework. The proposed framework reflects an im-
portant aspect of human generation processes in real life – we often create a
3D shape by sequentially assembling unit primitives with geometric constraints.
To find the desired combination regarding combination evaluations, we adopt
Bayesian optimization, which is able to exploit and explore efficiently the fea-
sible regions constrained by the current primitive placements. An evaluation
function conveys global structure guidance for an assembly process and stabil-
ity in terms of gravity and external forces simultaneously. Experimental results
demonstrate that our method successfully generates combinatorial 3D shapes and
simulates more realistic generation processes. We also introduce a new dataset
for combinatorial 3D shape generation. All the codes are available at https:
//github.com/POSTECH-CVLab/Combinatorial-3D-Shape-Generation.

1 Introduction

Constructing a 3D shape via sequential assembly has a huge potential. This generation scheme aims to
follow a target shape that can be employed in mimicking a human assembling process and allocating
a budget of the number of primitives given. In robotics, self-assembly robots [36, 30, 11, 31], inspired
by a phenomenon that self-organize a chaotic pattern to an ordered structure in chemistry [37] and
biology [14], are used in creating a target shape under a specific form of geometric constraints such
as contacts and local interactions. This line of research demonstrates the impressive results that open
new applications of sequential assembly. However, these methods have the limitation that they adopt
a heuristic or fixed-strategy approach to construct a target shape.

Generic generative models such as variational auto-encoders and generative adversarial networks
have been used where the following 3D representation is assumed; a fixed number of points [1],
a deformable mesh [12, 13], or a voxel grid [38, 39]. However, these generation schemes do not
reflect an important aspect of human assembling processes in real life – we often create a 3D shape
by sequentially assembling primitives into a combinatorial configuration. In this work, we solve a
sequential assembling problem with Bayesian optimization-based framework of combinatorial 3D

Workshop on machine learning for engineering modeling, simulation and design @ NeurIPS 2020

https://github.com/POSTECH-CVLab/Combinatorial-3D-Shape-Generation
https://github.com/POSTECH-CVLab/Combinatorial-3D-Shape-Generation


1 step 20 steps 40 steps 60 steps 80 steps 118 steps

Figure 1: Generated assembling sequence that creates a car shape with 118 unit primitives.

shape generation that creates a 3D shape with a set of geometric primitives. Our method can generate
a sequence of unit primitives without a significant amount of human effort or a brute-force technique.

In practice, the main challenge lies in a combinatorial explosion as the number of primitives increasing.
For instance, if we assemble 2×4 LEGO bricks on a free 3D space, the most naïve way is to take all
combinations into account and pick the most probable one for the purpose. However, with only six
2×4 LEGO bricks, the number of candidates amounts to 915 million combinations [9].1 A brute-force
approach to combinatorial generation is to find a needle in a haystack due to the prohibitive number
of possible combinations. To tackle this challenge, we propose a sequential assembling method
that iteratively evaluates the next possible primitive combinations in a sample-efficient manner, by
considering global structure guidance for assembling a target shape and stability in terms of gravity
and external forces. In addition to the proposed pipeline, we introduce a new combinatorial 3D shape
dataset that consists of 14 classes and 406 instances. Due to the nature of the combinatorial shape,
the dataset can be readily augmented by manipulating assembling orders. We hope the new dataset
opens a new benchmark for 3D shape generation.

2 Related Work

Self-Assembly Robots This class of robots has been inspired by a self-assembly phenomenon of
the nature [37, 14], which is driven by physical interaction between molecules or unit components,
or surrounding environments. Wei et al. [36] present a self-configurable and self-assembly modular
robot, the actuator of which can enable itself to move and dock to other modules. Romanishin et al.
[30] propose a magnetic modular robot, which can move independently with the flywheels installed
in the edges of robot. [11] suggests a printed self-folding robot that can be used in various fields such
as micro-assembly and space applications. Rubenstein et al. [31] propose a flock of programmable
self-assembly robots, which can create a target shape without external intervention.

Topology and Layout Optimization Topology optimization [3], which finds an optimal layout
where predefined configurations and constraints are provided, has widely been used in shape design,
prototyping, and manufacturing. Eschenauer et al. [10] introduce a method that inserts holes into
a component with iterative positioning. Borrvall and Petersson [4] use a topology optimization
technique in fluid mechanics to solve applications such as pipe and airfoil designs. Kharmanda et al.
[20] suggest a method to find reliable and efficient structures with the reliability index. Brackett et al.
[5] utilize topology optimization in additive manufacturing for producing end-use parts. Moreover, to
find an optimal layout for 3D objects, Testuz et al. [35] identify a suitable primitive set for a given
mesh and applies a greedy method to repair weak connections. Lee et al. [22] propose to optimize a
primitive layout using genetic algorithm. Luo et al. [24] consider the physical stability of constructed
model, which helps to create realistic and realizable assembly accomplishments.

Generative Models for 3D Objects Achlioptas et al. [1] learn representations from point clouds
via autoencoder. Their approach employs either raw point sets or learned representations, to train a
generative adversarial network. For the deformable mesh generation, Groueix et al. [13] suggest a
method to transform 2D texture map atlases into 3D surface. Gao et al. [12] generate structured de-
formable meshes. The network is composed of part-level and structural-level variational autoencoder.
On the other hand, convolutional deep belief networks [39] and generative adversarial networks [38]
are used to generate an occupancy grid. Nash et al. [26] predict mesh vertices and faces using
Transformer-based neural networks.

1Under the assembling conditions suggested in this paper; there exist 46 combinations for two bricks, 3,566
for three bricks, 405,716 for four bricks, and 59,814,648 for five bricks.
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(a) Target shape (b) 1×1-sized primitives (c) 2×4-sized primitives

Figure 2: Results on assembling a target shape with 1×1-sized primitives and 2×4-sized primitives.

Compared to the aforementioned techniques that attempt to find an optimal layout in terms of their
own evaluation metrics, our goal is to create a sequence of unit primitives, considering the stability
of combination as well as following a desired shape. To the best of our knowledge, this is the first
attempt to build a 3D shape via a sequential and combinatorial approach. In particular, our algorithm
efficiently seeks a feasible primitive combination using Bayesian optimization, by reducing the
number of observations required.

3 Sequential Assembly with Unit Primitives

In this section, we provide the detailed configurations and assumptions, which are used to propose
our combinatorial 3D shape generation method. Volumetric representation of our interest is the most
straightforward expression to define interactions between primitives and assemble a shape with a set
of geometric primitives. However, the choice for the types of unit geometric primitives is important,
because it makes this sequential assembly either too simple or too challenging.

Assume that we have a target shape (i.e., Figure 2(a)) to assemble. If we use 1×1-sized voxel
primitives, there exists only one combination composed of 24 primitives, as shown in Figure 2(b).
However, if we use the primitives identical to 2×4 volumetric primitives, we can assemble two
combinations (i.e., Figure 2(c)). These observations indicate that smaller and simpler primitives tend
to create more fine-grained shapes but have less combinatorial sequences. On the contrary, larger and
more complicated primitives tend to create coarser shapes but have more interesting combinatorial
sequences. These facts also relates to the real-world problem when we realize shapes by assembling
multiple parts. As a result, we restrict the primitive we employ as a single type, which can only
be connected with another primitive in fixed configurations and does not allow overlap between
primitives. In this work, we select a 2×4 LEGO brick as a unit primitive, since a 2×4-sized primitive
with studs and cavities is one of the representative basic LEGO bricks.2

4 Occupiability Grid

To tackle an assembly problem, we start by defining a search region S ⊆ R3, which is a space to
construct a 3D object. We employ occupiability grid, which is the opposite concept of probabilistic
volumetric models [28]. The occupiability grid is a grid of which the unit cell (i.e., a voxel) possesses
the possibility of being occupied in the future.

Given the number of partitions for each of three axes m1, m2, and m3, a voxel vijk can be rep-
resented as (i, j, k) where i ∈ [m1], j ∈ [m2], and k ∈ [m3], and a collection of entire voxels is
{vijk}i∈[m1],j∈[m2],k∈[m3]. For a generic voxel grid, the occupancy of a voxel is expressed as one of
two alternatives:

q(vijk) =

{
1 if it is occupied,
0 otherwise. (1)

On the other hand, the occupiability of voxel vijk can be expressed as

o(vijk) =

{
1 if it is occupiable,
0 otherwise. (2)

2We also have a historical reason for this choice. As introduced in [15], a 2×4 LEGO brick is the first patent
granted in 1947 of the LEGO company and it opens a progressive development of building a 3D shape.
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Figure 3: Overview of our combinatorial 3D shape generation pipeline.

In contrast with voxel definition, our concept of occupiability is to capture the likelihood of an empty
voxel would be occupied in the near future. Thus, the voxel that is already occupied or prohibited due
to specific constraints will be regarded as 0 occupiability.

Since a volumetric 2×4 brick as a unit primitive is placed in S, it should transform into a single
covariate to compare to other primitives. We thus denote the coordinate of each primitive as a 3D
vector x = [x1, x2, x3] ∈ S , where (x1, x2) is the center over the first two axes and x3 is the bottom
of the primitive, and the direction of each primitive as a scalar d. With this representation, suppose
that every primitive is placed over the plane that x3 = 0, and d of each primitive is placed either
lengthwise (i.e., denoted as d = 0) or breadthwise (i.e., denoted as d = 1). It means every primitive
can turn either 0, π/2, π, or 3π/2 radians along the third axis of S. To sum up, each primitive is
defined as a tuple (x, d) (henceforth, denoted as p ∈ P where P = S × {0, 1}) where x3 ≥ 0 and
d ∈ {0, 1}, and a n-primitive combination is expressed as a set {pi}ni=1 = {(xi, di)}ni=1.

5 Combinatorial 3D Shape Generation

An assembling sequence is generated where each step in the series is suggested by one of the
sequential model-based optimization methods, Bayesian optimization [6]. The Bayesian optimization
strategy efficiently samples the position of the next primitive to assemble.

Evaluating Primitive Combinations To determine the position of the next primitive guided by
Bayesian optimization, we need to define two evaluation functions over (n+ 1)-primitive combina-
tions. One fo is related to occupiability and the other fs is related to stability:

yo = fo (pn+1; {pl}nl=1) + εo and ys = fs (pn+1; {pl}nl=1) + εs, (3)

which are considered as true functions, where εo and εs are observation noises.

We design fo to guide to follow a global shape context without providing exact probable positions
of the primitive we would like to place. fs is to measure time to be stable where gravity is existed
and external forces at the beginning are applied. Suppose that vijk is a voxel of our interest and
{pl}nl=1 is the current primitive combination. Given a desired shape {vl}Nl=1, the occupiability is the
possibility to be occupied:

o(vijk; {pl}nl=1) = q
(
vijk; {vl}Nl=1

)
∧ (1− q (vijk; {pl}nl=1)) . (4)

With Eq. (3) and Eq. (4), the occupiability score over pn+1 is

fo (pn+1; {pl}nl=1) =
∑

vijk∈pn+1

o(vijk; {pl}nl=1). (5)

As the other evaluation function, we measure time to be stable where gravity is constantly applied to
the combination and external forces are applied at the beginning of the simulation. Since measuring
time to be stable in practice is a time-consuming and difficult task, we test an artificial experiment on
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Algorithm 1 Find a Feasible Primitive Combination
Input: An initial primitive combination {pi}mi=1, the number of primitives to assemble T , the

number of rollback steps τ , threshold for rolling back α.
Output: A primitive combination {pj}m+T

j=1 .
1: Initialize t← 0 and compute yo,0, ys,0 with {pt}mi=1.
2: while t < T do
3: Select a next primitive to assemble pt+1, using Algorithm 3.
4: Assemble pt+1 to the combination, {pt}m+t

i=1 .
5: Update t← t+ 1.
6: Compute yo,t, ys,t with {pt}m+t

i=1 .
7: if t ≥ τ and

∑τ−1
k=0

(
maxpm+t−k

yo,t−k
)
− yo,t−k < α then

8: Roll back {pt}m+t
i=1 to {pt}m+t′

i=1 where t′ = t− τ .
9: Update t← t− τ .

10: end if
11: end while
12: Return {pj}m+T

j=1

Algorithm 2 Query a Candidate of Next Primitive
Input: A n-primitive combination {pi}ni=1, r possible primitives observed and their evaluation

scores with the n-primitive combination {(pj , sj)}rj=1, the number of samples for acquisition
function optimization ζ.

Output: A candidate of next primitive p∗r+1.
1: Estimate a surrogate function:

f̂
(
p; {pi}ni=1, {(pj , sj)}rj=1

)
,

using the primitive combination and the historical observations.
2: Sample ζ primitives possible to assemble.
3: Find a maximizer p∗r+1, i.e., one of ζ primitives, of the acquisition function computed by f̂ .
4: Return p∗r+1

a physics engine simulator. To precisely measure the stability where instability is implanted, we apply
the external forces to one of four directions alternately at the beginning, and then measure time steps
until the position of combinations is not changed: fs (pn+1; {pl}nl=1) = τ , if 1

n+1

∑n+1
l=1 ‖p

(τ)
l −

p
(τ−1)
l ‖2 < ε, where p(τ) indicates the primitive position at a time step τ , and ε is a threshold for

terminating the simulation. The details are described in Section 6 and the appendices.

Determining the Next Primitive to Assemble Using the aforementioned evaluation functions
over primitive combinations, we can efficiently determine the next position to assemble. Bayesian
optimization, which is a sample-efficient global optimization method for black-box functions, se-
quentially finds the next primitive candidate that maximizes an acquisition function. The benefit of
utilizing Bayesian optimization is that we do not need to assume differentiability, continuity, or any
other specific functional form of the original function [6, 32].

As shown in Eq. (3), the evaluation functions that define where we should assemble cannot be
optimized using generic optimization strategies due to the unknown of functional forms. For this
property, Bayesian optimization is utilized to decide where a primitive should be assembled without
human intervention. Moreover, determining a primitive position to assemble is taken into account as
a process to reveal where we assemble the next position among huge possible primitive positions,
which is a sequential combinatorial procedure to assembling primitives with Bayesian optimization.
In this intuition, Algorithm 1, Algorithm 2, and Algorithm 3 are introduced.

First of all, similar to common Bayesian optimization [19, 25], a surrogate function over primitives is
built given r historical observations {(pi, yo,i, ys,i)}ri=1. Commonly, Gaussian process regression [29]
is used as a surrogate function in the Bayesian optimization community [6, 33], because it can express
any function in the reproducing kernel Hilbert space. Note that each primitive p is regarded as a
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Algorithm 3 Select the Next Primitive Position to Assemble
Input: Initial primitive combination {pi}mi=1, the number of initial primitives v, the number of

primitive candidates q > v.
Output: The next primitive to assemble pm+1.

1: Sample v primitives to be able to assemble randomly, {pi}vi=1.
2: Evaluate the primitive combinations each of which is composed of initial combination {pi}mi=1

and one of v primitives, {(pi, yo,i, ys,i)}vi=1.
3: for j = v + 1, . . . , q do
4: Query the next primitive candidate to assemble pj .
5: Evaluate the primitive combination composed of {pi}mi=1 and pj .
6: Update the candidate set, {(pi, yo,i, ys,i)}ji=1.
7: end for
8: Select the next primitive pm+1, which has achieved the best score from {(pi, yo,i, ys,i)}qi=1.
9: Return pm+1

four-dimensional vector, composed of a 3D vector of primitive x and a direction of primitive d. By
the Gaussian process regression, given r four-dimensional inputs P = [p1 · · ·pr]> ∈ Rr×4, their
associated outputs for occupiability yo = [yo,1 · · · yo,r] ∈ Rr, and their associated outputs for stability
ys = [ys,1 · · · ys,r] ∈ Rr, a function value and its uncertainty are represented by the posterior mean
and variance functions for occupiability or stability: µj(p) = k(p,P)

(
K(P,P) + σ2

nI
)−1

yj and
σ2
j (p) = k(p,p) − k(p,P)

(
K(P,P) + σ2

nI
)−1

k(P,p), where j ∈ {o, s}, and the covariance
functions are defined as k : R4×R4 → R, k : R4×Rr×4 → Rr, and K : Rr1×4×Rr2×4 → Rr1×r2 .
In addition, σ2

n is a noise scale and I is an identity matrix.

We compute the acquisition function values for ζ primitives possible to assemble, and find a maximizer
among the ζ primitives. To cope with two evaluation functions, we employ a multi-objective Bayesian
optimization with random scalarizations [27]. A maximizer p∗ of the acquisition function over p is
found to observe the true functions:

p∗ = argmax
p∈P

λoa(p;µo(p), σ
2
o (p)) + λsa(p;µs(p), σ

2
s (p)), (6)

where P is a compact set, and λo, λs are random weights sampled from uniform distributions.
As an acquisition function, in this paper, we use Gaussian process upper confidence bound (GP-
UCB) [34], aUCB(p;P, s) = µ(p) + γσ(p), where γ is a trade-off hyperparameter for exploitation
and exploration. This procedure is presented in Algorithm 2.

Sampling ζ is the main difference between our method and common Bayesian optimization strategies.
Well-known techniques for optimizing an acquisition function (e.g., DIRECT [18] and L-BFGS-
B [23]) poorly work, because our search space contains the complicated constraints that are basically
determined by occupiabilities. Besides, the combinatorial approach [2] is difficult to apply due to
the curse of dimensionality, which is derived from the combinatorial explosion of inputs. We thus
sample a feasible set from a primitive set, each element of which can assemble. This technique is
used in the automated machine learning community [16].

As shown in Algorithm 3, after choosing v initial random primitives and evaluating those primitives
with {pi}mi=1, where m is the cardinality of given primitive combination, a primitive candidate is
queried, and new observation is accumulated, until q primitives are observed. Finally, the next
primitive that has achieved the best score for occupiability is returned. Algorithm 1 describes how a
feasible primitive combination is assembled with the evaluation functions that guide an assembling
process. Consequently, we obtain a (m+ T )-primitive combination.

Rolling Back the Primitives Previously Assembled Our method might be able to provide a sub-
optimal sequence, because the Bayesian optimization module, which always guarantees to find a
global solution [6, 34], accumulates local (but possibly global) optima in a row. Hence, our method
includes a rollback step, as shown in Line 7 to Line 10 in Algorithm 1. Given the number of rollback
steps τ and a threshold for rolling back α, if the condition written below is satisfied: t ≥ τ and∑τ−1
k=0

(
maxpm+t−k

yo,t−k
)
−yo,t−k < α, t-primitive combination is rolled back to (t−τ)-primitive

combination. To avoid rolling back in the same combination infinitely, we prevent placing the same
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(Cup) 10 steps 20 steps 30 steps 55 steps

(Bench) 15 steps 30 steps 45 steps 70 steps

(Table) 5 steps 10 steps 15 steps 29 steps

(Sofa) 15 steps 30 steps 45 steps 64 steps

Figure 4: Results on sequential primitive assemblies.
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Figure 5: Quantitative results on maximizing four explicit evaluation functions (i.e., height, width,
depth, and the number of connected studs). BO indicates our sequential assembly method. All the
experiments are repeated ten times, and their means and the 1.96 standard deviations are plotted.

position if the rollback is activated and we skip the rollback if the same assembling step is repeated
for five times.

6 Experimental Results

Combinatorial 3D Shape Generation via Sequential Assembly We sequentially generate a com-
binatorial 3D shape by optimizing Eq. (3), given the occupiability with a desired shape, as described
in the main method section. Our assembly results shown in Figure 1 and Figure 4 demonstrate that
our method can effectively find a feasible combination, by considering our evaluation functions. To
accommodate a page limit, we provide additional experimental results in the appendices.

Explicit Evaluation Functions for Bayesian Optimization Module To confirm the validity of
our Bayesian optimization module where an evident evaluation function is given. For example, the
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(A-a) Parallel (A-b) Perpen. (B-a) Bar (B-b) Line (B-c) Plate (B-d) Wall (B-e) Cuboid

(B-f) Pyramid (C-a) Bench (C-b) Sofa (C-c) Cup (C-d) Hollow (C-e) Table (C-f) Car

Figure 6: Selected examples from our combinatorial 3D shape dataset.

height of combination can express the current status of the given combination as an evaluation score:

f (pn+1; {pi}ni=1) = max
(x1,x2,x3,d)∈{pi}n+1

i=1

x3 + 1. (7)

Similar to Eq. (7), we define three more specific functions: width, depth, and the number of connected
studs. Likewise, these BO modules attempt to maximize the evaluation functions we define. For these
experiments, we use three baselines, which are described in the appendices. As shown in Figure 5, our
method outperforms other methods and achieves the results closest to the oracles of four experiments.

7 Combinatorial 3D Shape Dataset

We construct a combinatorial 3D shape dataset, composed of 406 instances of 14 classes. Specifically,
each object in our dataset is considered equivalent to a sequence of primitive placement. For this
reason, compared to other 3D object datasets [7, 40], our proposed dataset contains an assembling
sequence of unit primitives. It implies that we can quickly obtain a sequential generation process
that is a human assembling mechanism. Furthermore, we can sample valid random sequences from a
given combinatorial shape after validating the sampled sequences. To sum up, the characteristics of
our combinatorial 3D shape dataset are

(i) combinatorial: Duplicates of unit primitive is repeatedly connected;
(ii) sequential: Allowable connections between primitives are sequentially added;

(iii) decomposable: By the combinatorial property, parts of combination can be sampled if they
are valid in terms of the contact and overlap conditions;

(iv) manipulable: New primitive is addable or the existing primitives are removable.

Our 3D shape dataset is implemented to satisfy the above properties, supporting sequential assembly,
combination validation, possible position listing, and part sampling.

As shown in Figure 6, we select 14 classes: parallel, perpendicular, bar, line, plate, wall, cuboid,
square pyramid, bench, sofa, cup, hollow, table, and car. Parallel that implies the directions of two
primitives are same, and perpendicular that implies the directions of two primitives are different
classes are own connection types of 2×4-sized primitives with studs and cavities (denoted as group
A). Bar, plate, cuboid, wall, and square pyramid classes are taken into account as default components
to assemble sophisticated shapes (denoted as group B). The other classes are abstractly thought of as
the combination of those default components (denoted as group C). More diverse examples and the
statistics of our dataset can be found in the appendices.

8 Conclusion

We propose a sequential assembly method for a combinatorial 3D generation problem. It can generate
a combinatorial shape, considering sample efficiency that is guided by Bayesian optimization. The
evaluation function based on global shape guidance and stability demonstrates that our method
generates 3D shapes composed of unit primitives. Besides, we create a new dataset for combinatorial
3D models. This dataset allows us to generate 3D shapes sequentially.
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Appendices

We describe the details which are omitted from the main article. First, we show the connection types
between two 2×4-sized primitives. Then, we describe the experimental setups and visualize some
examples of our combinatorial 3D shape dataset.

Appendix A Connection Types between Two Two-by-Four Primitives

There exist 46 connection types between two 2×4 LEGO brick-shaped primitives where upper and
lower primitives are fixed, as shown in Figure 7. They comprise group A of our combinatorial dataset.

Figure 7: 46 connection types between two 2×4-sized primitives.

Appendix B Experimental Setups

Gaussian process regression with Matérn 5/2 kernels [29] and Gaussian process upper confidence
bound (GP-UCB) [34] are used as a surrogate model and an acquisition function, respectively.
The hyperparameters of kernels for the regression models are optimized by marginal likelihood
maximization with BFGS algorithm. Similar to the setting in [34], the trade-off hyperparameter of GP-
UCB monotonically increases over iterations. Rather than setting a specific number of samples ζ for
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(a) Placing (b) Applying forces (c) Measuring stability

Figure 8: Stability simulation results with PyBullet.

Line 4 of Algorithm 3, we sample as many candidates of maximizer as possible within the given time
budget. We set the time budget as 1 second in most of the cases. Unless otherwise specified, v and q in
Algorithm 3 are set to 10 and 20, respectively. In all the experiments, an initial primitive combination
in Algorithm 1 is given as {([0, 0, 0], 0)}, to assemble from scratch. Bayesian optimization modules
are implemented with [21]. For multi-objective Bayesian optimization, λo is sampled from uniform
distribution U(0.8, 0.9) and λs is sampled from uniform distribution U(0.0, 0.1).
To measure the stability, we use the physics engine simulator [8] as shown in Figure 8. We first place
a combination we would like to measure the stability. And then, we alternately apply external forces
to one of four directions (see Figure 8(b)) at the beginning of the simulation (i.e., 200 time steps)
where gravity is existed. After applying the forces, we measure time steps to be stable in terms of the
position of given combination.

Open3D framework [41] and Mitsuba renderer [17] are employed to deal with 3D objects and
visualize the primitive assembly results. For attractive visualization, we randomly pick the color of
primitives from red, blue, and green.

For the experiments for explicit evaluation functions, we compare our method to three baselines:

(i) Oracle: It is the best achievable result;
(ii) Random: This baseline is a fully-randomized result. One of the primitives possible to

assemble is uniformly selected at every assembling step;
(iii) Random with evaluations: It is a result by a greedy method. The best primitive is chosen at

every step after evaluating the primitives uniformly sampled. The number of the sampled
primitives is set to q to compare with our method fairly.

Appendix C Combinatorial 3D Shape Dataset

We demonstrate a part of our combinatorial 3D shape dataset, as shown in Figure 7, and Figure 9 to
Figure 20. In addition, the statistics on our dataset is specified in Table 1.

Figure 9: Examples of Bar class.
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Figure 10: Examples of Line class.

Figure 11: Examples of Plate class.

Figure 12: Examples of Wall class.

Figure 13: Examples of Cuboid class.

Figure 14: Examples of Square Pyramid class.

Figure 15: Examples of Bench class.

Figure 16: Examples of Sofa class.
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Figure 17: Examples of Cup class.

Figure 18: Examples of Hollow class.

Figure 19: Examples of Table class.

Figure 20: Examples of Car class.

Table 1: Statistics on combinatorial 3D shape dataset. Std stands for standard deviation.

Group A Parallel Perpen.

#instances 21 25
Mean of #primitives 2.0 2.0per instance
Std of #primitives 0.0 0.0per instance
Group B Bar Line Plate Wall Cuboid Sq. Pyramid

#instances 30 30 30 30 30 30
Mean of #primitives 11.9 32.5 56.0 27.9 26.4 164.0per instance
Std of #primitives 6.6 42.0 35.1 14.6 17.6 129.2per instance
Group C Bench Sofa Cup Hollow Table Car

#instances 30 30 30 30 30 30
Mean of #primitives 55.4 59.6 49.7 46.3 36.9 83.6per instance
Std of #primitives 28.0 30.5 31.2 31.8 19.2 41.0per instance
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