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S1 Algorithms

Algorithm S1 details the probabilistic gradient descent algorithm. Algorithm S2 de-
scribes the probabilistic line search procedure.

S2 Posterior Updating

In this section we describe the procedure used to update the posterior distribution based
on new information. Suppose we have a prior µ = N (a,C) and have constructed the
posterior µ̄1 based upon the information I1 = f1, where I1 : U∂P → Rd and f1 ∈ Rd. For
computational purposes this requires the inverse of the matrix I1C(I1)† or, equivalently,
the solution of linear systems involving this matrix. Thus, we suppose that the Cholesky
factorisation L1 has been computed, so that I1C(I1)† = L1L

>
1 , where the factor L1 is

upper-triangular.
Now suppose that new information is supplied, I2 : U∂P → Rd′ with corresponding

information f2 ∈ Rd′ , and suppose that I2 is linearly independent of I1. We wish to
compute the posterior distribution µ̄2 by conditioning the distribution µ̄1 on this new
information with as low a computational cost as possible.

A natural approach would be to simply perform the conditioning procedure described
in Proposition 1 with µ = µ̄1, however in practise this approach was found to suffer from
a high degree of numerical instability. Instead, we advocate conditioning the original
prior on this new information by updating the Cholesky factorisation computed for I1.
The form of the new Gramian matrix whose factorisation must be computed is

I1:2C(I1:2)† =

[
I1C(I1)† I1C(I2)†
I2C(I1)† I2C(I2)†

]
.
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Algorithm S1 Probabilistic version of gradient descent. The routines metric and info
are problem specific and must be supplied by the user, with the former assessing the
distribution of the currently computed posterior distribution to determine whether it is
sufficiently narrow to accept it as a valid gradient and the latter supplying information,
iteratively, based on the current distribution and location. The routine condition
implements Proposition 1. pls is the probabilistic version of the Armijo line search,
and is given in Algorithm S2. Of the new parameters, δ reflects how much accuracy is
demanded of the posterior at each iteration, δmin specifies a maximum level of accuracy to
protect against numerical instabilities resulting from large Gram matrices in condition,
and τ describes how rapidly δ is reduced when a valid descent direction cannot be found.

1: procedure pgd(p0, g, µ0, ε, δ, δmin, τ1)
2: Compute ν0 from µ0 and let X0 be the random variable with law ν0

3: for n = 1, 2, . . . do
4: sn, Xn, γn ← probjac(Xn−1, g, pn−1, ε, δ, δmin)
5: if γn < ε then
6: return pn−1

7: end if
8: pn ← pn−1 + γnsn

9: end for
10: end procedure
11: procedure probjac(X, g, p, ε, δ, δmin, τ1)
12: while δ > δmin do
13: while metric(X) > δ do
14: I, f ← info(X, p)
15: X ← condition(X, I, f)
16: s← −E(X(p))/‖E(X(p))‖2
17: γ ← pls(p, g,X)
18: if γ < ε then
19: δ ← τ1δ
20: else
21: return s,X, γ
22: end if
23: end while
24: end while
25: end procedure
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Algorithm S2 Probabilistic line search algorithm. This is essentially a modification of
the backtracking line search described in Nocedal and Wright [2006, Algorithm 3.1] to
account for the fact that the gradient is a random variable rather than a constant. The
parameters p, g and X are the parameter value, objective function and current posterior,
respectively. The remaining parameters control the behaviour of the algorithm; we have
specified sensible defaults for these and assume those defaults are used throughout the
text. τ2 controls how rapidly γ is decreased, while c controls how large a reduction in
the objective function is required when a step is taken in the chosen direction and P crit

is the probability with which this reduction must be achieved. γ and γmin control the
initial and minimum values of γ respectively.

procedure pls(p, g,X; τ2 = 0.5, c = 0.5, P crit, γ = 1, γmin = 10−10)
s← −E(X)/‖E(X)‖2
while γ > γmin do

pγ ← p+ γs
if g(pγ) > g(p) then

continue
end if
Z ← −cγX>s
if P(Z > g(pγ)− g(p)) < P crit then

return γ
end if
γ ← τ2γ

end while
end procedure
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Following [Osborne, 2010, Appendix B], we may form the Cholesky factorisation of this
matrix as

I1:2C(I1:2)† = L1:2L
>
1:2

L1:2 =

[
L1 S12
0 S22

]
where S12 = (L>1 )−1I1C(I2)†, and S22 is the Cholesky factorisation of a Rd′×d′ matrix
given by

S22S
>
22 = I2C(I2)† − S12S>12.

Examining the cost of this procedure, we see that the only near-cubic operation required
is this Cholesky factorisation, so that the update is approximately O((d′)3). This may
then be used to compute the posterior from Proposition 1 without incurring the O((d+
d′)3) cost that would be required to compute it without reusing the Cholesky factor.
We note that a triangular solve of O((d+ d′)2) is required to compute the full posterior
distribution. Thus, as the size of the system grows, the cost will still increase at a
quadratic rate. This was not found to be prohibitive for the experiments presented
in this paper, and it is possible that with further optimisations this cost may also be
reduced.

S3 Information Function for the Experiment

We now detail the implementation of the function info for the problem detailed in
Section 5. Recall that the information functionals Ij correspond to finite element basis
functions φj , which themselves correspond to nodal locations in the finite element mesh.
Denote these locations {xinfo

j }. We choose new conditioning locations within this set
by attempting to minimise a heuristic based on the fill distance which often appears as
an upper bound in Gaussian process regression problems. To be specific, we begin by
constructing an augmented point set:

zij =

[
xinfo
i

pj

]
.

for i = 1, . . . , 1089, with j = 1, . . . , n denoting the iteration number in probjac and pj

the corresponding parameter value for that iteration. The information functionals were
then selected to be the Ĩj for which the distance between zin and zi′j , i, i

′ = 1, . . . , 1089,
j = 1, . . . , n− 1, is maximised. To ensure that the information f is nonzero, we enforce
that when metric(Xn) > δ, the first locations to be conditioned upon are those basis
functions corresponding to xdatai .
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