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Abstract

Many problems in engineering and design require balancing competing objec-
tives under the presence of uncertainty. The standard approach in the literature
characterizes the relationship between design decisions and their corresponding
outcomes as a Pareto frontier, which is discovered through multiobjective opti-
mization. In this position paper, we suggest that this approach is not ideal for
reasoning about practical design decisions. Instead of multiobjective optimization,
we propose soliciting desired minimum performance constraints on all objectives
to define regions of satisfactory. We present work-in-progress which visualizes
the design decisions that consistently satisfy user-defined thresholds in an additive
manufacturing problem.

1 Introduction

Design problems are ubiquitous in science and engineering. These design problems are inherently
decision making tasks that require balancing complex choices under competing metrics to satisfy
real-world constraints. Using numerical simulation to study the impact of design decisions prior to
manufacturing has become a common strategy to reduce the number of fabrications required (and
the cost to find an effective design). This may be called sim-to-real in some communities such as
robotics [30]. Optimization has been a powerful ally for solving design problems [9, 24]. Scientists
and engineers often pose design problems as optimization of an objective function f : X → R that
codifies their preference over choices within the design space X of possibilities. In most cases, there
are multiple competing objectives that need to be investigated [19, 29].

Traditional optimization methods typically rely on structural assumptions about these objective
functions; for example, one might require that f is differentiable, linear, convex, deterministic or
very cheap to evaluate. In many real-world scenarios, however, f will be nonlinear, noisy and/or
with unknown function form. In these scenarios, the Bayesian optimization (BO) [10, 20, 13] (and
more recently, multiobjective Bayesian optimization [1, 28, 16]) framework has become a popular
approach to address these problems.

Bayesian optimization is especially popular (in contrast to, for example, genetic algorithms [15, 8])
when evaluating very expensive objectives. Despite the popularity of these techniques, they fail to
address the crux of design problems: understanding the impact of choices (independent variable) to
outcomes (dependent variable). While finding a high performing parameter, or approximate Pareto
frontier (in a multiobjective setting), produces a good design choice, the sample efficiency limits any
understanding of the impact of varying designs on the resulting performance.

Our motivation comes from materials science, where the materials design process can be accelerated
by numerical simulation prior to eventual fabrication through additive manufacturing. As can be
seen in Figure 1, a CAD model, on which numerical simulations would be conducted, will encounter
some amount of discrepancy during actual fabrication. This will be especially pronounced when
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approaching the fabrication limits of the additive manufacturing device (in this case, the Nanoscribe
Photonic Professional GT 3D printer [22]).

10 um

9.2 um

Figure 1: left: A CAD model of a proposed pin. right: The resulting fabrication of this pin; the
extremely small size of this pin causes imprecision on a normally small scale to be more noticeable.

Of course, the purpose of BO algorithms is not to provide understanding on the design/objective
relationship; it is to balance exploration and exploitation of the possible design options to find high
performing outcomes. In using these, however, we fail to account for a key element in the design
process: that our metrics from the numerical simulations are not exactly equal to what will be seen in
production.

In this setting, the discrepancy between simulated and real objective values can be significant.
Multiobjective Bayesian optimization does not account for this variation in design space, making it
unsuitable for many real-world design tasks. We propose an alternative to Bayesian multiobjective
optimization based on minimum performance constraints, with the goal of better preparing for the
additive manufacturing process. To do so, we suggest that the balance of exploration and exploitation
should be adjusted to provide design decisions which are more likely to be reliable in production.

2 Additive manufacturing example

In [14], the authors studied a numerical simulation for helping design an additive manufacturing
strategy for minimizing the reflection of light at multiple incidence angles. A search was conducted
for different nanostructures which balance a desire for minimizing normal reflection with reflection
at an oblique angle:

min
x∈X

Rnormal(x), min
x∈X

Roblique(x).

The results of the multiobjective optimizations were approximate Pareto frontiers containing the
efficient designs, shown in Figure 3.

The simulation, conducted using the Lumerical software [21], has a level of inaccuracy associated
with the numerical methods. In addition, there is a level of imprecision associated with the actual
manufacturing process which means that the desired design parameters are only realized to limited
precision during the manufacturing process. The scanning electron microscope image in Figure 2
shows the fabrication result of one of the efficient designs.

For [14], the authors studied the designs of the Pareto efficient nanostructures and showed that
physical properties predicted by theory were confirmed to be efficient in the numerical simulation.
But the physical limitations of the manufacturing process complicate the use of these results (as seen
in Figure 2).

• The “true” Pareto frontier for these two objectives is a 1D curve in parameter space (3 or 4
dimensions for these fabrication problems).

– The true Pareto frontier cannot be learned, both because the numerical simulation has
limited accuracy and because the Pareto frontier is an uncountable set of points. The
multiobjective optimization process only estimates it.
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Figure 2: Schematic drawings (left) of the nanowire (top) and nanocone (bottom) design spaces and
associated Pareto frontiers (right), as estimated through numerical simulation (condensed presentation
from [14]).

Figure 3: SEM image of nanocones built on top of a piece of bare glass using additive manufacturing.
The scale of the manufacturing is approaching the limits of the fabrication device, which prevents the
structures from meeting the exact specifications used in the simulation.

• During manufacturing, the outcome will not exactly match the desired design.

– Therefore, even if we knew the true Pareto frontier, the manufactured result would not
be Pareto efficient.

3 Alternative to the Pareto frontier

The problem with the Pareto frontier is that deviation in parameter space generally yields uncertain
results in objective space. During a multiobjective optimization, effort is focused entirely on trying
to expand the Pareto frontier (in objective space) without much consideration of how eventual
inaccuracies in the design implementation will affect the performance.

This problem is amplified in a multiobjective Bayesian optimization setting, where the expensive cost
in the simulation (or, more generally, function evaluation) demands sample efficiency in the search
for the Pareto frontier. When a genetic algorithm is used for multiobjective optimization, there may
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be a very large number of designs simulated, leaving many results to help choose viable outcomes
for fabrication. For a multiobjective Bayesian optimization, many fewer designs are simulated, and
much less is known about how imprecision in manufacturing will affect the finished product.

We propose constraint search as an alternative to the multiobjective optimization for finding effective
designs. In this formulation, we solicit constraints τj for each metric of interest fj : these constraints
serve as minimum performance thresholds that the eventual fabrication must meet to be acceptable.
Given these constraints, our goal for this reflection minimization problem is to find the regions in
parameter space which satisfy these constraints:

Find : {x : Rnormal(x) ≤ τnormal, Roblique(x) ≤ τoblique}.

This is written with upper performance thresholds (as a minimization problem), but, in general, each
objective could have either lower or upper bounds without loss of generality.

To demonstrate the potential of this alternate consideration, we reconsider the fabrication problems in
[14]; to avoid the cost of the simulation, we built surrogate models from the 500 results used to create
the nanowire and nanocone results in that article. With these surrogates, we estimated the normal and
oblique reflection values from 10000 uniformly random design configurations. The reflection values
are shown in Figures 4 and 5 (left), and the respective design space on the right.
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Figure 4: Nanowire results from uniform sampling of the surrogate with τnormal = 1.5 and τoblique = 5.
The initial 500 points were also included to better estimate the Pareto frontier. left: Plots of objective
values. right: Design space of three parameters (box size, diameter and height). Pareto frontier points
are highlighted in colors. Feasible (blue) and infeasible (light gray) points also shown. The domains
are triangular where physical limitations prevent certain configurations

In these examples, the Pareto frontier (colored points) corresponds to a scattered set of points
throughout the parameter space. It is unclear that a particular choice of normal reflection vs oblique
reflection (for example the yellow points) would lead to a particular design configuration — notice
how the box size varies considerable. In contrast, the parameter region associated with the constraint
satisfied results produces a more dense set of results. We find this much more actionable when dealing
with uncertainty in the final fabrication process – the region gives a better sense of which designs
could be used to achieve the desired performance thresholds when the fabrication process imparts
some error. It also naturally captures the imprecision of the objective functions in the transition from
simulation to reality.

4 Constraint active search, related work and open challenges

We prefer this constraint search formulation, in lieu of the standard multiobjective formulation, for
the following reasons.

• The explore-exploit balance which powers an efficient constraint search would find more
actionable information for the actual manufacturing (rather than simply trying to increase

4



Top Diameter

H
ei
gh
t

Bot Diameter

H
ei
gh
t

Bot DiameterTo
p
D
ia
m
et
er

Box Size

H
ei
gh
t

Box SizeTo
p
D
ia
m
et
er

Box SizeBo
tD

ia
m
et
er

O
bl
iq
ue

Re
fle
ct
io
n

Normal Reflection

1.0

0.2 0.4 0.6

1.5

2.5

2.0

3.0

Height: 1-800 (nm)
Bot Diameter: 1-400 (nm)
Top Diameter: 1-400 (nm)
Box Size: 1-400 (nm)

Figure 5: Nanocone results from similar setup of Figure 4. τnormal = 0.5 and τoblique = 1.5. left: Plots
of objective values. right: Design space of four parameters (box size, bottom diameter, top diameter,
and height). Pareto frontier points are highlighted in colors. Feasible (blue) and infeasible (light gray)
points also shown.

the hypervolume of the feasible region in metric space, the goal of any multiobjective
optimization algorithm).

• The use of constraints on objectives as performance thresholds naturally fits many industrial
conditions. These thresholds are also naturally interpretable, even by people not involved in
the design process.

• No explicitly defined noise distribution or knowledge of a design-objective relationship must
be known.

• Conceivably, an efficient constraint would run independently of the number of objectives, un-
like a multiobjective optimization which becomes more difficult as the number of objectives
grows.

– The logic we are using is also applicable in a setting with a single objective.

The demonstration in Section 3 required 10000 design evaluations, which is impractical when using
the actual simulation (rather than the surrogate). To move this from a constraint search to a constraint
active search, where we intelligently choose each design to test so as to be sample efficient, we look
to the broader framework of decision theory [23, 7]. A typical approach in decision theory is to
quantify the quality of each design by a utility function; the design with highest utility is the next
to be tested. Designing such a utility function, which appropriately values our desire to effectively
explore the constraint-satisfying region of parameter space, remains an open problem.

To start to address this problem, we note that our proposed constraint search formulation shares
elements which appear in strategies across numerous fields. The most immediate connection is to
the multiobjective optimization field, as we described earlier. The difference between these is that
multiobjective optimization seeks to maximize the hypervolume in metric space, whereas constraint
search seeks to maximize the hypervolume of constraint-satisfying results in parameter space.

The topic of robust optimization deals with preventing undesirable outcomes. Deterministic robust
optimization avoids undesirable outcomes through a stability radius in design space [27, 5, 6], which is
generalized in probabilistic robust optimization through an uncertainty set in design space [4, 2, 3, 25].
Instead of preventing undesirable outcomes, constraint search seeks to efficiently map out the space of
desirable ones, implicitly defined through thresholds on the objective function. This makes constraint
search a fundamentally different problem, more suited to revealing the structure and relationships of
parameter space to objective values.

Finally, our formulation is closely related to the work the field of active search [12, 11, 17]. In active
search, the goal is to select as many relevant, rare elements from a finite design space as quickly as
possible, e.g., chemical configurations in drug discovery, [26, 18]. This matches our goal here (which
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is why we use the term constraint search), where the combination of constraints on all the metrics
have changed the problem into a search for positive outcomes. Unlike active search, constraint search
will likely take place in a continuously parametrized design space. Active search algorithms typically
require one positive outcome for initialization, which would be potentially extremely expensive to
produce in our setting. Furthermore, our goal is to explore the constraint-satisfying parameter space,
not simply exploit known satisfying results to maximize the number of positive outcomes found.

Each of these fields provides ideas and methodologies which we think will help constraint active
search become a viable strategy for helping simulation improve efficiency in additive manufacturing,
as well as other applications. Significant work must still be done to effectively visualize the results
of such as search; those visualizations are fundamental to choosing designs which will undergo
fabrication, but are increasingly complicated as the design space grows in complexity and contains
both continuous and discrete parameters.
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