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Abstract

It is often necessary in engineering to reduce a comprehensive mathematical model
to a simplified representation which admits faster evaluation for control and opti-
misation applications. However, this reduction can often lead to "missing physics"
problem, whereby important dynamics of the true process have been sacrificed for
tractability. In this work we consider the augmentation of these mathematically
reduced models with adaptive data-driven components to recover this information.
By introducing a stochastic differential equation framework with a set of common
latent forcing function we allow information to be shared between different op-
erating conditions, referred to as tasks, and to further generalise to new physical
scenarios. Unfortunately, standard approaches to this problem scale cubicly in
the number of tasks and so we introduce an approximation which achieves linear
scaling allowing a large range of different physical scenarios to be investigated.
Finally we demonstrate the potential of this method to improve prediction and
generalisability in simplified models of Lithium-ion battery dynamics.

1 Introduction

Constructing physically realistic models of the complex dynamical systems which are of interest to
mathematicians and engineers often requires the use high dimensional, nonlinear models typical in
the form of partial differential equations (PDEs). For a given parameterisation such models can be
delicate and expensive to forward simulate from, and such difficulties only get compounded once one
also has to consider the problem of parameter inference and calibration. Typically for applications in
control and design optimisation, it is necessary to create simplified approximations to the original
system. This process often takes the form of an apriori mathematical reduction of the model, and as
a result some of the physical realism of the original specification must be sacrificed leading to the
problem of missing physics in the reduced model, a loss of information which cannot be recovered
from the reduced model regardless of our access to observations from this same system.

Machine learning offers the possibility of recovering this information by combining simplified
mechanistic representations with flexible data-driven components to create efficient hybrid models of

∗Code to implement the this paper is available at https://github.com/danieljtait/spmelf

Workshop on machine learning for engineering modeling, simulation and design @ NeurIPS 2020

https://github.com/danieljtait/spmelf


dynamical systems. In the case of continuous time dynamical systems a promising approach is to
consider the modulation of the dynamics by Gaussian processes (GPs) which are learned from data,
this is the latent force model introduced by [Álvarez et al., 2009]. In this work we consider a multitask
[Bonilla et al., 2008] framework adapted to dynamical systems in order to construct these hybrid
models, each task corresponding to a different operating condition of the system we are studying.
Unfortunately, the standard approach to inference in this model would scale cubicly with the number
of tasks. We address this problem by introducing an approximation in Section 3 that decouples each
of the per-task problems and then constructs the posterior as a product of experts [Hinton, 2002].
Each expert corresponds to the posterior of a linear Gaussian state space model (SSM) and we show
in Section 4 that this product can be renormalised as a single equivalent SSM. This allows us to
replace the cubic scaling the number of tasks with a linear scaling.

Finally, we demonstrate the ability of this framework to successfully recover missing physics
when simplifying complex models describing the dynamics of Li-ion concentration within batteries
under charging and discharging. This results in a consistently well-informed simulation of battery
state capable of evolving to capture unknown battery characteristics which have been lost under
simplification of the original model. Importantly the use of a mathematical reduction combined with
our decoupling approximation enables models which are fast enough for control applications, but
which also utilise data to maintain fidelity to the true governing dynamics.

2 Background

In this work we consider a collection of P vector valued processes xp(t) ∈ RDp for p = 1, . . . , P ,
where each of the xp processes is to be viewed as representing our system of interest under a particular
operating condition, for instance an electrochemical system under different discharge rates. We refer
to each of the processes xp(t) as a task process or more simply a task [Bonilla et al., 2008], and our
objective is to allow each task to share information, but in such a way that the resulting inference
problem remains tractable, even in the case of a large number of tasks.

We want to include an adaptive data-driven information sharing term for each of our continuous time
processes and so Gaussian processes are a natural candidate leading to the adoption of a Gaussian
process latent variable framework[Lawrence, 2004]. More explicitly we assume that each of these
processes interacts through the presence of a common continuous time process, and we denote this set
of R common latent functions by {gr(t)}Rr=1. To complete the construction of a dynamical system
we assume each task can be modelled by a forced stochastic differential equation (SDE) of the form

dxp
dt

= Apxp(t) +

R∑
r=1

sprgr(t) + Lpwp(t) (1)

where each wp is a mean-zero driving white noise process with E[wp(t)wq(t
′)] = Qpδ(t− t′)δpq,

for p = 1, . . . , P , and where Lp are the Dp ×Dp diffusion coefficient matrices. In particular each of
these white noise processes is independent for separate tasks, and so the only connection between the
models for each task is the shared latent forces.

Each of the vectors spr ∈ RDp acts to distribute the scalar perturbation forcing function gr(t) over
the domain of xp. We shall further assume that each gr(t) is a Gaussian process (GP) admitting
a representation in state space form [Rasmussen and Williams, 2005]. That is there is some state
variable zr, and vector hr ∈ RMr such that gr(t) = 〈hr, zr(t)〉, and a matrix Fr such that

dzr
dt

= Frzr + L0,rw0,r(t).

Then if we We write z = (z1, . . . , zR)> for the concatenation of these variables, and similarly define
F as the block diagonal matrices with blocks Fr, r = 1, . . . , R and H is the R ×

∑R
r=1 block

diagonal matrix with blocks given by row vectors h>r . Then we may write the model for each task
with R latent forces as

dxp
dt

= Apxp(t) + Spz(t) + Lpwp(t), p = 1, . . . , P (2a)

dz

dt
= Fzt + L0w0(t) (2b)
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where E[wp(t)wq(t
′)] = Qpδ(t− t′)δpq , for p = 0, 1, . . . , P and where Sp = SprH, with Spr the

matrix with columns spr.

This process is a particular instance of the latent force model framework introduced by [Álvarez et al.,
2009], and as such one could immediately consider conducting inference in the standard way using
filtering methods, for example using the approach in [Hartikainen et al., 2012] or see [Rogers et al.,
2020] for a recent discussion in an engineering context. This would involve collecting the components
of the system (2) into a single augmented model and then discretising in the usual manner. If we
define x = (x1, . . . ,xP )> then the result is a single SDE of the form

d

dt


x1

x2

...
xP
z

 =


A1 0 · · · 0 S1

0 A2 · · · 0 S2

...
...

. . .
...

...
0 0 · · · AP SP
0 0 · · · 0 F




x1

x2

...
xP
z

+


L1w1

L2w2

...
LPwp

L0w0

 . (3)

Unfortunately, this approach will suffer from fatal scaling issues as either the dimension of tasks,
or the number of tasks increases. To see this we will consider applying Kalman-Filtering over N
time-steps then writing D = P−1

∑P
p=1Dp for the average task dimension filtering methods will

scale like O(N · (PD +M)3) [Säarkä and Solin, 2019], and so will quickly become infeasible for
any combination of large state dimension, or large number of tasks. In the next sections we introduce
an approximation which is linear in the number of tasks.

Sensitivity matrix in PDE latent force models For many applications in engineering, and in
particular the example we consider in Section 5 we shall be concerned with the case when the matrix
Ap for each task arises from the discretisation of a PDE. With this in mind it is natural to replace the
vector valued sensitivity vectors sr with functions sr(ω) defined over a domain Ω with coordinates
ω ∈ Ω. For example we could consider a specification of the mechanistic component with Dirichlet
boundary conditions f(ω, t) given by

∂x(ω, t)

∂t
= Ax+

R∑
r=1

sr(ω)gr(t) (4a)

x(ω, t) = f(ω, t) for x on ∂Ω (4b)

for some linear operator A, with obvious extensions to more general boundary conditions.

From (4a) we also have the clear interpretation of the functions sr(ω) and their interactions with the
latent forces gr(t). For a given timescale t, the latent forces gr(t) determine a scalar contribution
to the dynamics in (4a), the functions sr(ω) then determine how this stochastic perturbation is
distributed over the spatial domain. After discretisation, for example by finite differences, finite
elements or finite volumes, we produce a discretised version which takes the

x(t) = Ax(t) +

R∑
r=1

srgr(t). (5)

Typically now the components (sr)i, i = 1, . . . , D will represent the function, or a projection of the
function, at a collection of nodal coordinates ωi ∈ Ω. In this work we shall consider the case where
each of the sensitivity function is given by summing over a set of basis functions {φk}Qk=1 defined
over the domain Ω, and we write

sr(ω) =

K∑
k=1

βkφk(ω).

Observation model To complete the modelling setup we require an observation model which
connects a variable yp(t) to the state variable xp for each task. We assume that these observations
models are independent for each task and write

p(Y | X) =

P∏
p=1

N∏
n=1

p(yp,n | xp,n). (6)
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<latexit sha1_base64="xFlr9F8dCSyCLxYest4xQCC1zAM=">AAAB9HicbVDLSgMxFL3js9ZX1aWbYBFclDIjBXUhFN24rGAf0A6SyWTa0EwyJplCGfodblwo4taPceffmLaz0NYDgcM553JvTpBwpo3rfjsrq2vrG5uFreL2zu7efungsKVlqghtEsml6gRYU84EbRpmOO0kiuI44LQdDG+nfntElWZSPJhxQv0Y9wWLGMHGSn5y7VV6PJRGV1DjsVR2q+4MaJl4OSlDDpv/6oWSpDEVhnCsdddzE+NnWBlGOJ0Ue6mmCSZD3KddSwWOqfaz2dETdGqVEEVS2ScMmqm/JzIcaz2OA5uMsRnoRW8q/ud1UxNd+hkTSWqoIPNFUcqRkWjaAAqZosTwsSWYKGZvRWSAFSbG9lS0JXiLX14mrfOqV6te3dfK9Zu8jgIcwwmcgQcXUIc7aEATCDzBM7zCmzNyXpx352MeXXHymSP4A+fzB1XSkTA=</latexit>

zn+1

<latexit sha1_base64="G2ozhlEGRxBgvwctmsuXEfS7ilk=">AAAB+XicbVDLSsNAFL2pr1pfUZduBosgCCWRgrorunFZwT6gDWEynbRDJ5MwMynUkD9x40IRt/6JO//GaZuFth4YOJxzL/fMCRLOlHacb6u0tr6xuVXeruzs7u0f2IdHbRWnktAWiXksuwFWlDNBW5ppTruJpDgKOO0E47uZ35lQqVgsHvU0oV6Eh4KFjGBtJN+2+xHWoyDMnnI/Exdu7ttVp+bMgVaJW5AqFGj69ld/EJM0okITjpXquU6ivQxLzQineaWfKppgMsZD2jNU4IgqL5snz9GZUQYojKV5QqO5+nsjw5FS0ygwk7Ocatmbif95vVSH117GRJJqKsjiUJhypGM0qwENmKRE86khmEhmsiIywhITbcqqmBLc5S+vkvZlza3Xbh7q1cZtUUcZTuAUzsGFK2jAPTShBQQm8Ayv8GZl1ov1bn0sRktWsXMMf2B9/gCzQJO4</latexit>

J̃p,n

<latexit sha1_base64="EjXBAPGbvYhysy7q+g3ldhT1Qq0=">AAACAnicbVDLSsNAFJ3UV62vqCtxM1gEF1ISKai7ohtxVcE+oAlhMpm0QyeTMDMRSghu/BU3LhRx61e482+ctFlo64ELh3Pu5d57/IRRqSzr26gsLa+srlXXaxubW9s75u5eV8apwKSDYxaLvo8kYZSTjqKKkX4iCIp8Rnr++Lrwew9ESBrzezVJiBuhIachxUhpyTMPHEVZQDInQmrkh9ltnntZcgp57pl1q2FNAReJXZI6KNH2zC8niHEaEa4wQ1IObCtRboaEopiRvOakkiQIj9GQDDTlKCLSzaYv5PBYKwEMY6GLKzhVf09kKJJyEvm6s7hUznuF+J83SFV44WaUJ6kiHM8WhSmDKoZFHjCggmDFJpogLKi+FeIREggrnVpNh2DPv7xIumcNu9m4vGvWW1dlHFVwCI7ACbDBOWiBG9AGHYDBI3gGr+DNeDJejHfjY9ZaMcqZffAHxucPuouXqA==</latexit>

J̃p,n+1

<latexit sha1_base64="di7mZZgx48ZyJXfdqQnfDbpdQ0s=">AAACBHicbVDLSsNAFJ34rPUVddnNYBEEpSRSUHdFN+Kqgn1AE8JkMmmHTiZhZiKUkIUbf8WNC0Xc+hHu/BsnbRbaeuDC4Zx7ufceP2FUKsv6NpaWV1bX1isb1c2t7Z1dc2+/K+NUYNLBMYtF30eSMMpJR1HFSD8RBEU+Iz1/fF34vQciJI35vZokxI3QkNOQYqS05Jk1R1EWkMyJkBr5YXab516WnEJ+YueeWbca1hRwkdglqYMSbc/8coIYpxHhCjMk5cC2EuVmSCiKGcmrTipJgvAYDclAU44iIt1s+kQOj7QSwDAWuriCU/X3RIYiKSeRrzuLW+W8V4j/eYNUhRduRnmSKsLxbFGYMqhiWCQCAyoIVmyiCcKC6lshHiGBsNK5VXUI9vzLi6R71rCbjcu7Zr11VcZRATVwCI6BDc5BC9yANugADB7BM3gFb8aT8WK8Gx+z1iWjnDkAf2B8/gCj7ZgY</latexit>

(a) Full transition model

zn�1

<latexit sha1_base64="FUOUHaOTaAMWmAD6R+MFcrbSn98=">AAAB+XicbVDLSsNAFL2pr1pfUZduBovgxpJIQd0V3bisYB/QhjCZTtqhk0mYmRRqyJ+4caGIW//EnX/jtM1CWw8MHM65l3vmBAlnSjvOt1VaW9/Y3CpvV3Z29/YP7MOjtopTSWiLxDyW3QArypmgLc00p91EUhwFnHaC8d3M70yoVCwWj3qaUC/CQ8FCRrA2km/b/QjrURBmT7mfiQs39+2qU3PmQKvELUgVCjR9+6s/iEkaUaEJx0r1XCfRXoalZoTTvNJPFU0wGeMh7RkqcESVl82T5+jMKAMUxtI8odFc/b2R4UipaRSYyVlOtezNxP+8XqrDay9jIkk1FWRxKEw50jGa1YAGTFKi+dQQTCQzWREZYYmJNmVVTAnu8pdXSfuy5tZrNw/1auO2qKMMJ3AK5+DCFTTgHprQAgITeIZXeLMy68V6tz4WoyWr2DmGP7A+fwC2TJO6</latexit>

zn

<latexit sha1_base64="fQ08yVFKfjk+YtPnQ7fLsA1K8Uk=">AAAB83icbVDLSgMxFL2pr1pfVZdugkVwVWakoO6KblxWsA/oDCWTZtrQTGZIMkId+htuXCji1p9x59+YaWehrQcCh3Pu5Z6cIBFcG8f5RqW19Y3NrfJ2ZWd3b/+genjU0XGqKGvTWMSqFxDNBJesbbgRrJcoRqJAsG4wuc397iNTmsfywUwT5kdkJHnIKTFW8ryImHEQZk+zgRxUa07dmQOvErcgNSjQGlS/vGFM04hJQwXRuu86ifEzogyngs0qXqpZQuiEjFjfUkkipv1snnmGz6wyxGGs7JMGz9XfGxmJtJ5GgZ3MM+plLxf/8/qpCa/8jMskNUzSxaEwFdjEOC8AD7li1IipJYQqbrNiOiaKUGNrqtgS3OUvr5LORd1t1K/vG7XmTVFHGU7gFM7BhUtowh20oA0UEniGV3hDKXpB7+hjMVpCxc4x/AH6/AGNwpIL</latexit>

x1,n�1

<latexit sha1_base64="m5st545k2kOTDPMn+oE3PqYbd5w=">AAAB/HicbVDLSsNAFL2pr1pf0S7dDBbBhZZECuqu6MZlBfuAtpTJdNIOnUzCzEQsIf6KGxeKuPVD3Pk3TtostPXAwOGce7lnjhdxprTjfFuFldW19Y3iZmlre2d3z94/aKkwloQ2SchD2fGwopwJ2tRMc9qJJMWBx2nbm9xkfvuBSsVCca+nEe0HeCSYzwjWRhrY5V6A9djzk8d0kLinSJy56cCuOFVnBrRM3JxUIEdjYH/1hiGJAyo04ViprutEup9gqRnhNC31YkUjTCZ4RLuGChxQ1U9m4VN0bJQh8kNpntBopv7eSHCg1DTwzGQWVS16mfif1421f9lPmIhiTQWZH/JjjnSIsibQkElKNJ8agolkJisiYywx0aavkinBXfzyMmmdV91a9equVqlf53UU4RCO4ARcuIA63EIDmkBgCs/wCm/Wk/VivVsf89GCle+U4Q+szx/x7JRT</latexit>

xP,n�1

<latexit sha1_base64="iuiFEQG/cXSlBFof8Ki/SCsRy0s=">AAAB/HicbVDLSsNAFL2pr1pf0S7dDBbBhZZECuqu6MZlBfuANoTJdNIOnUzCzEQsof6KGxeKuPVD3Pk3TtsstPXAwOGce7lnTpBwprTjfFuFldW19Y3iZmlre2d3z94/aKk4lYQ2Scxj2QmwopwJ2tRMc9pJJMVRwGk7GN1M/fYDlYrF4l6PE+pFeCBYyAjWRvLtci/CehiE2ePEzxqnSJy5E9+uOFVnBrRM3JxUIEfDt796/ZikERWacKxU13US7WVYakY4nZR6qaIJJiM8oF1DBY6o8rJZ+Ak6NkofhbE0T2g0U39vZDhSahwFZnIaVS16U/E/r5vq8NLLmEhSTQWZHwpTjnSMpk2gPpOUaD42BBPJTFZEhlhiok1fJVOCu/jlZdI6r7q16tVdrVK/zusowiEcwQm4cAF1uIUGNIHAGJ7hFd6sJ+vFerc+5qMFK98pwx9Ynz8hsZRy</latexit>

xP,n

<latexit sha1_base64="KOTPEUdorDz6PwsnzCFKhR528xQ=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBbBhZRECuqu6MZlBfuANoTJdNIOnUzCzEQtsZ/ixoUibv0Sd/6N0zYLbT0wcDjnXu6ZEyScKe0431ZhZXVtfaO4Wdra3tnds8v7LRWnktAmiXksOwFWlDNBm5ppTjuJpDgKOG0Ho+up376nUrFY3OlxQr0IDwQLGcHaSL5d7kVYD4Mwe5z4WeMUiYlvV5yqMwNaJm5OKpCj4dtfvX5M0ogKTThWqus6ifYyLDUjnE5KvVTRBJMRHtCuoQJHVHnZLPoEHRulj8JYmic0mqm/NzIcKTWOAjM5DaoWvan4n9dNdXjhZUwkqaaCzA+FKUc6RtMeUJ9JSjQfG4KJZCYrIkMsMdGmrZIpwV388jJpnVXdWvXytlapX+V1FOEQjuAEXDiHOtxAA5pA4AGe4RXerCfrxXq3PuajBSvfOYA/sD5/ADwTlAA=</latexit>

x1,n

<latexit sha1_base64="7wND77765pWVrUSbN2xeF0pszpw=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBbBhZRECuqu6MZlBfuANoTJdNIOnUzCzEQtsZ/ixoUibv0Sd/6N0zYLbT0wcDjnXu6ZEyScKe0431ZhZXVtfaO4Wdra3tnds8v7LRWnktAmiXksOwFWlDNBm5ppTjuJpDgKOG0Ho+up376nUrFY3OlxQr0IDwQLGcHaSL5d7kVYD4Mwe5z4mXuKxMS3K07VmQEtEzcnFcjR8O2vXj8maUSFJhwr1XWdRHsZlpoRTielXqpogskID2jXUIEjqrxsFn2Cjo3SR2EszRMazdTfGxmOlBpHgZmcBlWL3lT8z+umOrzwMiaSVFNB5ofClCMdo2kPqM8kJZqPDcFEMpMVkSGWmGjTVsmU4C5+eZm0zqpurXp5W6vUr/I6inAIR3ACLpxDHW6gAU0g8ADP8Apv1pP1Yr1bH/PRgpXvHMAfWJ8/DJuT4Q==</latexit>

x1,n+1

<latexit sha1_base64="GXMeZFvzWAbXx0oSqMiSn93I+a8=">AAAB/HicbVDLSsNAFL2pr1pf0S7dDBZBUEoiBXVXdOOygn1AW8pkOmmHTiZhZiKWEH/FjQtF3Poh7vwbJ20W2npg4HDOvdwzx4s4U9pxvq3Cyura+kZxs7S1vbO7Z+8ftFQYS0KbJOSh7HhYUc4EbWqmOe1EkuLA47TtTW4yv/1ApWKhuNfTiPYDPBLMZwRrIw3sci/Aeuz5yWM6SNwzJE7ddGBXnKozA1ombk4qkKMxsL96w5DEARWacKxU13Ui3U+w1IxwmpZ6saIRJhM8ol1DBQ6o6iez8Ck6NsoQ+aE0T2g0U39vJDhQahp4ZjKLqha9TPzP68bav+wnTESxpoLMD/kxRzpEWRNoyCQlmk8NwUQykxWRMZaYaNNXyZTgLn55mbTOq26tenVXq9Sv8zqKcAhHcAIuXEAdbqEBTSAwhWd4hTfryXqx3q2P+WjBynfK8AfW5w/u4JRR</latexit>

xP,n+1

<latexit sha1_base64="TAH0p+dJER/Np3EL3H18MWgkmEo=">AAAB/HicbVDLSsNAFL2pr1pf0S7dDBZBUEoiBXVXdOOygn1AG8JkOmmHTiZhZiKWUH/FjQtF3Poh7vwbp20W2npg4HDOvdwzJ0g4U9pxvq3Cyura+kZxs7S1vbO7Z+8ftFScSkKbJOax7ARYUc4EbWqmOe0kkuIo4LQdjG6mfvuBSsVica/HCfUiPBAsZARrI/l2uRdhPQzC7HHiZ40zJE7diW9XnKozA1ombk4qkKPh21+9fkzSiApNOFaq6zqJ9jIsNSOcTkq9VNEEkxEe0K6hAkdUedks/AQdG6WPwliaJzSaqb83MhwpNY4CMzmNqha9qfif1011eOllTCSppoLMD4UpRzpG0yZQn0lKNB8bgolkJisiQywx0aavkinBXfzyMmmdV91a9equVqlf53UU4RCO4ARcuIA63EIDmkBgDM/wCm/Wk/VivVsf89GCle+U4Q+szx8epZRw</latexit>

zn�1

<latexit sha1_base64="FUOUHaOTaAMWmAD6R+MFcrbSn98=">AAAB+XicbVDLSsNAFL2pr1pfUZduBovgxpJIQd0V3bisYB/QhjCZTtqhk0mYmRRqyJ+4caGIW//EnX/jtM1CWw8MHM65l3vmBAlnSjvOt1VaW9/Y3CpvV3Z29/YP7MOjtopTSWiLxDyW3QArypmgLc00p91EUhwFnHaC8d3M70yoVCwWj3qaUC/CQ8FCRrA2km/b/QjrURBmT7mfiQs39+2qU3PmQKvELUgVCjR9+6s/iEkaUaEJx0r1XCfRXoalZoTTvNJPFU0wGeMh7RkqcESVl82T5+jMKAMUxtI8odFc/b2R4UipaRSYyVlOtezNxP+8XqrDay9jIkk1FWRxKEw50jGa1YAGTFKi+dQQTCQzWREZYYmJNmVVTAnu8pdXSfuy5tZrNw/1auO2qKMMJ3AK5+DCFTTgHprQAgITeIZXeLMy68V6tz4WoyWr2DmGP7A+fwC2TJO6</latexit>

zn

<latexit sha1_base64="fQ08yVFKfjk+YtPnQ7fLsA1K8Uk=">AAAB83icbVDLSgMxFL2pr1pfVZdugkVwVWakoO6KblxWsA/oDCWTZtrQTGZIMkId+htuXCji1p9x59+YaWehrQcCh3Pu5Z6cIBFcG8f5RqW19Y3NrfJ2ZWd3b/+genjU0XGqKGvTWMSqFxDNBJesbbgRrJcoRqJAsG4wuc397iNTmsfywUwT5kdkJHnIKTFW8ryImHEQZk+zgRxUa07dmQOvErcgNSjQGlS/vGFM04hJQwXRuu86ifEzogyngs0qXqpZQuiEjFjfUkkipv1snnmGz6wyxGGs7JMGz9XfGxmJtJ5GgZ3MM+plLxf/8/qpCa/8jMskNUzSxaEwFdjEOC8AD7li1IipJYQqbrNiOiaKUGNrqtgS3OUvr5LORd1t1K/vG7XmTVFHGU7gFM7BhUtowh20oA0UEniGV3hDKXpB7+hjMVpCxc4x/AH6/AGNwpIL</latexit>

xp,n

<latexit sha1_base64="6YHveS+YBWhfnpaD8hHPuC0DWTo=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDBbBhZRECuqu6MZlBfuANoTJdNIOnUzCzEQtsZ/ixoUibv0Sd/6N0zYLbT0wcDjnXu6ZEyScKe0431ZhZXVtfaO4Wdra3tnds8v7LRWnktAmiXksOwFWlDNBm5ppTjuJpDgKOG0Ho+up376nUrFY3OlxQr0IDwQLGcHaSL5d7kVYD4Mwe5z4WXKKxMS3K07VmQEtEzcnFcjR8O2vXj8maUSFJhwr1XWdRHsZlpoRTielXqpogskID2jXUIEjqrxsFn2Cjo3SR2EszRMazdTfGxmOlBpHgZmcBlWL3lT8z+umOrzwMiaSVFNB5ofClCMdo2kPqM8kJZqPDcFEMpMVkSGWmGjTVsmU4C5+eZm0zqpurXp5W6vUr/I6inAIR3ACLpxDHW6gAU0g8ADP8Apv1pP1Yr1bH/PRgpXvHMAfWJ8/bROUIA==</latexit>

xp,n+1

<latexit sha1_base64="IICDVKkGRLCb1YqXRyqN9dcEfV0=">AAAB/HicbVDLSsNAFL2pr1pf0S7dDBZBUEoiBXVXdOOygn1AW8pkOmmHTiZhZiKWEH/FjQtF3Poh7vwbJ20W2npg4HDOvdwzx4s4U9pxvq3Cyura+kZxs7S1vbO7Z+8ftFQYS0KbJOSh7HhYUc4EbWqmOe1EkuLA47TtTW4yv/1ApWKhuNfTiPYDPBLMZwRrIw3sci/Aeuz5yWM6SKIzJE7ddGBXnKozA1ombk4qkKMxsL96w5DEARWacKxU13Ui3U+w1IxwmpZ6saIRJhM8ol1DBQ6o6iez8Ck6NsoQ+aE0T2g0U39vJDhQahp4ZjKLqha9TPzP68bav+wnTESxpoLMD/kxRzpEWRNoyCQlmk8NwUQykxWRMZaYaNNXyZTgLn55mbTOq26tenVXq9Sv8zqKcAhHcAIuXEAdbqEBTSAwhWd4hTfryXqx3q2P+WjBynfK8AfW5w9P5ZSQ</latexit>

xp,n�1

<latexit sha1_base64="dkV3UdgHMqRUKQRmTGM9lp8MZRs=">AAAB/HicbVDLSsNAFL2pr1pf0S7dDBbBhZZECuqu6MZlBfuAtpTJdNIOnUzCzEQsIf6KGxeKuPVD3Pk3TtostPXAwOGce7lnjhdxprTjfFuFldW19Y3iZmlre2d3z94/aKkwloQ2SchD2fGwopwJ2tRMc9qJJMWBx2nbm9xkfvuBSsVCca+nEe0HeCSYzwjWRhrY5V6A9djzk8d0kESnSJy56cCuOFVnBrRM3JxUIEdjYH/1hiGJAyo04ViprutEup9gqRnhNC31YkUjTCZ4RLuGChxQ1U9m4VN0bJQh8kNpntBopv7eSHCg1DTwzGQWVS16mfif1421f9lPmIhiTQWZH/JjjnSIsibQkElKNJ8agolkJisiYywx0aavkinBXfzyMmmdV91a9equVqlf53UU4RCO4ARcuIA63EIDmkBgCs/wCm/Wk/VivVsf89GCle+U4Q+szx9S8ZSS</latexit>

p = 1, . . . , P

<latexit sha1_base64="xFlr9F8dCSyCLxYest4xQCC1zAM=">AAAB9HicbVDLSgMxFL3js9ZX1aWbYBFclDIjBXUhFN24rGAf0A6SyWTa0EwyJplCGfodblwo4taPceffmLaz0NYDgcM553JvTpBwpo3rfjsrq2vrG5uFreL2zu7efungsKVlqghtEsml6gRYU84EbRpmOO0kiuI44LQdDG+nfntElWZSPJhxQv0Y9wWLGMHGSn5y7VV6PJRGV1DjsVR2q+4MaJl4OSlDDpv/6oWSpDEVhnCsdddzE+NnWBlGOJ0Ue6mmCSZD3KddSwWOqfaz2dETdGqVEEVS2ScMmqm/JzIcaz2OA5uMsRnoRW8q/ud1UxNd+hkTSWqoIPNFUcqRkWjaAAqZosTwsSWYKGZvRWSAFSbG9lS0JXiLX14mrfOqV6te3dfK9Zu8jgIcwwmcgQcXUIc7aEATCDzBM7zCmzNyXpx352MeXXHymSP4A+fzB1XSkTA=</latexit>

zn+1

<latexit sha1_base64="G2ozhlEGRxBgvwctmsuXEfS7ilk=">AAAB+XicbVDLSsNAFL2pr1pfUZduBosgCCWRgrorunFZwT6gDWEynbRDJ5MwMynUkD9x40IRt/6JO//GaZuFth4YOJxzL/fMCRLOlHacb6u0tr6xuVXeruzs7u0f2IdHbRWnktAWiXksuwFWlDNBW5ppTruJpDgKOO0E47uZ35lQqVgsHvU0oV6Eh4KFjGBtJN+2+xHWoyDMnnI/Exdu7ttVp+bMgVaJW5AqFGj69ld/EJM0okITjpXquU6ivQxLzQineaWfKppgMsZD2jNU4IgqL5snz9GZUQYojKV5QqO5+nsjw5FS0ygwk7Ocatmbif95vVSH117GRJJqKsjiUJhypGM0qwENmKRE86khmEhmsiIywhITbcqqmBLc5S+vkvZlza3Xbh7q1cZtUUcZTuAUzsGFK2jAPTShBQQm8Ayv8GZl1ov1bn0sRktWsXMMf2B9/gCzQJO4</latexit>

J̃p,n

<latexit sha1_base64="EjXBAPGbvYhysy7q+g3ldhT1Qq0=">AAACAnicbVDLSsNAFJ3UV62vqCtxM1gEF1ISKai7ohtxVcE+oAlhMpm0QyeTMDMRSghu/BU3LhRx61e482+ctFlo64ELh3Pu5d57/IRRqSzr26gsLa+srlXXaxubW9s75u5eV8apwKSDYxaLvo8kYZSTjqKKkX4iCIp8Rnr++Lrwew9ESBrzezVJiBuhIachxUhpyTMPHEVZQDInQmrkh9ltnntZcgp57pl1q2FNAReJXZI6KNH2zC8niHEaEa4wQ1IObCtRboaEopiRvOakkiQIj9GQDDTlKCLSzaYv5PBYKwEMY6GLKzhVf09kKJJyEvm6s7hUznuF+J83SFV44WaUJ6kiHM8WhSmDKoZFHjCggmDFJpogLKi+FeIREggrnVpNh2DPv7xIumcNu9m4vGvWW1dlHFVwCI7ACbDBOWiBG9AGHYDBI3gGr+DNeDJejHfjY9ZaMcqZffAHxucPuouXqA==</latexit>

J̃p,n+1

<latexit sha1_base64="di7mZZgx48ZyJXfdqQnfDbpdQ0s=">AAACBHicbVDLSsNAFJ34rPUVddnNYBEEpSRSUHdFN+Kqgn1AE8JkMmmHTiZhZiKUkIUbf8WNC0Xc+hHu/BsnbRbaeuDC4Zx7ufceP2FUKsv6NpaWV1bX1isb1c2t7Z1dc2+/K+NUYNLBMYtF30eSMMpJR1HFSD8RBEU+Iz1/fF34vQciJI35vZokxI3QkNOQYqS05Jk1R1EWkMyJkBr5YXab516WnEJ+YueeWbca1hRwkdglqYMSbc/8coIYpxHhCjMk5cC2EuVmSCiKGcmrTipJgvAYDclAU44iIt1s+kQOj7QSwDAWuriCU/X3RIYiKSeRrzuLW+W8V4j/eYNUhRduRnmSKsLxbFGYMqhiWCQCAyoIVmyiCcKC6lshHiGBsNK5VXUI9vzLi6R71rCbjcu7Zr11VcZRATVwCI6BDc5BC9yANugADB7BM3gFb8aT8WK8Gx+z1iWjnDkAf2B8/gCj7ZgY</latexit>

(b) Decoupled approximate transition model

Figure 1: (a) The graphical model of the system (8) showing the dense connections of the original model (b) The
diagram for the approximate model extended to show the deterministic nodes J̃n(zn−1, zn−1) which are used
to condition and so decouple the task models.

where xp,n, respectively xp,n is an observation of the process at time tn, for n = 1, . . . , N . An
important special case is when the the observation model is a linear Gaussian model and we write

p(yp,n | xp,n) = N (yp,n | Cpxp,n,Γ). (7)

The choice of a linear Gaussian observation model allows inference for all the methods considered in
this paper to be done using exact Kalman filtering and smoothing.

3 The approximate decoupled task model

In order to achieve an approximation which demonstrates better scaling with respect to the number of
tasks we first solve the system (2) explicitly, see [Säarkä and Solin, 2019], on an interval [tn, tn+∆t],
and note that the solution is given by

xp,n = eAp∆txp,n−1 + Jp,n + Wp,n (8a)

zn = eF∆tzn−1 + W0,n (8b)

where we have defined

Jp,n =

∫ tn+∆t

tn

eAp(tn+∆t−τ)Spz(τ) dτ,

Wp,n =

∫ tn+∆t

tn

eAp(tn+∆t−τ)Lpwp(τ) dτ

W0,n =

∫ tn+∆t

tn

eF (tn+∆t−τ)L0w0(τ) dτ

Because of the independence of Wp,n and Wq,n for p 6= q, we observe that the transitions for each
task process will share information only through the common latent force, and so we realise dense
connections between each task, this is shown graphically in Figure 1a. Nevertheless, given the limited
avenue by which information can be shared between tasks it is worthwhile asking if there exists some
conditioning which could introduce an effective decoupling of the tasks.

The information sharing between a given task and the latent process occurs through the non-zero
covariance of Jn and W0,n and so by conditioning on Jn we break the dependence and decouple the
different tasks, this is clear from the conditional independence graph in Figure 1b. Unfortunately
obtaining the variables Jn is at least as difficult as solving the original system, and so not immediately
useful. However, we can begin to arrive at our decoupling by replacing the integral term Jn by a
suitable quadrature Jn ≈ ∆t

2

(
eAp∆tSpzn−1 + Spzn

)
. Using this quadrature approximation and

(8b) we can write the update (8a) as

xp,n ≈ eAp∆txp,n−1 +
∆t

2

(
eAp∆tSpzn−1 + Spzn

)
+ Wp,n

= eAp∆txp,n−1 +
∆t

2

(
eAp∆tSp + Spe

F∆t
)

zn−1 +
∆t

2
SpW0,n + Wp,n, (9)
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and so up an error introduced by the quadrature we can write the transition density of the fully
augmented model as

[
xn
zn

] ∣∣∣∣ [xn−1

zn−1

]
∼ N

([
xn
zn

] ∣∣∣∣ [eA∆t ∆t
2

(
eA∆tS + SeF∆t

)
0 eF∆t

] [
xn−1

zn−1

] [
Σ11 Σ12

Σ21 Σ22

])
(10)

where for p, q = 1, . . . , P we have defined the blocks

(Σ11)pq = δpqE
[
Wp,n,W

>
q,n

]
+

(
∆t

2

)2

SpE
[
W0,W

>
0

]
S>q (11a)

(Σ12)p =
∆t

2
SpE

[
W0W

>
0

]
(11b)

and where Σ22 = E
[
W0W

>
0

]
, we shall also define Σp,∆

∆
= E

[
Wp,nW>

p,n

]
.

For ∆t� 1 this implies that most of the information in the transition distribution is captured by the
auto-covariance of each task noise term and the covariance of the task with the latent force. With
the cross-covariance of the tasks being negligible conditional on xp,n−1 and zn−1. We further note
that, after conditioning on zn and zn−1, then the innovation in (8a) depends only on Wp,n which by
construction are independent between tasks. As a result after conditioning the model decouples, and
we write our approximation, p̃, to the transition distribution as

p̃(xn | xn−1, zn−1, zn)

= N

(
xp,n

∣∣∣∣ eAp∆txp,n−1 +
∆t

2

(
eAp∆tSpzn−1 + Spzn

)
,E
[
Wp,nW>

p,n

])
.

The resulting decoupling of the transition model after conditioning on the quadrature terms J̃p,n is
displayed in Figure 1b.

3.1 Product of state space experts

We now show that the decoupling in the previous section allows us to write the complete posterior up
to proportionality as a product of experts [Hinton, 2002], an expert arising from each task trained
independently. First we note that using our approximation to the transition model, p̃, we have

p(xn+1 | xn, zn, zn+1) ≈
P∏
i=1

p̃(xi,n+1 | xi,n, zn, zn+1), (12)

and assuming that the prior for each task is independent so that p(x1) =
∏P
i=1 p(xi,1) then

p(X | Z) = p(x1)

N∏
n=2

p(xn | xn−1, zn−1, zn)

≈
P∏
i=1

p(xi,1)

N∏
n=2

p̃(xi,n | xi,n−1, zn−1, zn)

∆
=

P∏
i=1

p̃(Xi | Z) (13)

then using our assumption that the observations are independent for each task we can approximate
the joint density as

p(X,Y,Z) ≈
P∏
i=1

p(Yi | Xp)p̃(Xi | Z)p(Z)
∆
=

P∏
i=1

p̃(Yi,Xi,Z). (14)
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Note that each term of the product is a state space model using the decoupled transition density p̃,
and we can write the posterior as

p(X,Z | Y) ∝ p(X,Z,Y)

≈
P∏
i=1

p̃(Yi,Xi,Z)

∝
P∏
i=1

p̃(Xi,Z | Yi). (15)

Each of the terms p̃(Xp,Z | Yp) may be obtained by independently filtering and smoothing a state
space model with transition density p̃ and observations Yp. While the cost of filtering the original
model (2) was O(N(DP )3), each of these decoupled tasks can be filtered at a computational cost
of only O(ND3) and so filtering the complete collection independently has a total complexity of
O(ND3P ). In summary we have reduced the cubic scaling in the number of task with a linear
scaling, however we still need to address the problem of normalising (15) to access useful summaries
of the posterior such as moments, or to sample from it effectively.

4 Posterior of state space experts

In the previous section we introduced an approximation that effectively decouples our tasks, leading
to an approximate posterior (15) which was a product of experts, an expert corresponding to the
posterior of a state space model only using the model for the pth task. In this section we demonstrate
that this product may be represented as a single state state space model. To do so it will be helpful
to introduce a generic state vector w. We shall also denote the posterior conditional on data Y by
q(w) = p(w | Y), and understand that any densities q(·) are understood to be conditioned on the
data, although the algebraic manipulations in this section hold in full generality.

We also recall that the posterior of a linear Gaussian state space model can be obtained by backward
smoothing [Bishop, 2006, Säarkä and Solin, 2019], and so the posterior of a state space model can
also be represented as the density of a Markov process but now running backwards in the index

qi(w1, . . . ,wN ) = qi(wN )

N−1∏
n=1

qi(wn | wn+1),

where each of the transition models takes the form of a conditional linear Gaussian model which we
denote by

qi(wn | wn+1) = N (wn | Ai,nwn+1 + bi,n,Λ
−1
i,n). (16)

The full density in product of experts form is then given, up to a constant, by

q(w1, . . . ,wN ) ∝
P∏
i=1

qi(wN )

N−1∏
n=1

qi(wn | wn+1), (17)

and we now consider the problem of normalising this final expression to derive expressions for the
marginal distributions of the full posterior. Infact we shall show that we can write

q(w1, . . . ,wN ) ∝
N−1∏
n=1

p(ξ̂n | wn)q(wn | wn+1)q(wN ) (18)

for some set of variables ξ̂n, and therefore posterior may be obtained by applying filtering and
smoothing to the backwards model conditioned on the variables Ξ̂ = {ξ̂n}Nn=1. Note also that the
filtering and smoothing for this final posterior is run in the opposite direction for that used for each of
the individual experts.

Product of linear Gaussian transition models We show in the appendix that we may write the
product of the transition densities, up to a scaling factor independent of wn and wn+1, in two
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different forms depending on the order which we complete the square
P∏
i=1

∝ N (wn | Anwn+1 + bn,Σn)×N (wn | αn,Γn) (19a)

∝ N (wn | A′nwn+1 + b′n,Σ
′
n)×N (wn+1 | α′n+1,Γ

′
n+1) (19b)

where in both cases proportionality holds up to a constant independent of wn and wn+1. There
parameters are given explicitly by

An = Ψ−>1 Ψ2,n A′n = Ψ−1
0,nΨ1 (20a)

bn = Ψ−>1,nvn b′n = Ψ−1
0,nun (20b)

Σn =
(
Ψ1,nΨ−1

2,nΨ>1,n
)−1

Σ′n = Ψ−1
0,n (20c)

αn = Γn(un −Ψ>1 Ψ−1
2 v) α′n+1 = Γ′n+1(Ψ>1,nΨ−1

0,nun − vn) (20d)

Γn =
(
Ψ0,n −Ψ1Ψ

−1
2 Ψ>1

)−1

Γ′n+1 =
(
Ψ2,n −Ψ>1,nΨ−1

0,nΨ1,n

)−1

(20e)

depending on the matrix statistics

Ψ0,n =

P∑
i=1

Λi,n Ψ1,n =

P∑
i=1

Λi,nAi,n Ψ2,n =
P∑
i=1

A>i,nΛi,nAi,n (21a)

and vector valued statistics

un =

P∑
i=1

Λi,nbi,n vn =

P∑
i=1

A>i,nΛibi,n. (21b)

Recursive normalization In order to normalise our product of state space experts, and so construct
the single state space model which is equivalent to this product, we will frequently need to evaluate
integrals of the form

In(wn)
∆
=

∫ P∏
i=1

n−1∏
m=1

qi(wm | wm+1) dw1 · · · dwn−1.

These can be evaluated recursively by first noting that

In+1(wn+1) =

∫ P∏
i=1

n∏
m=1

qi(wm | wm+1) dw1 · · · dwn

=

∫ P∏
i=1

qi(wn | wn+1)

∫ P∏
i=1

n−1∏
m=1

qi(wm | wm+1) dw1 · · · dwn−1

dwn

=

∫ P∏
i=1

qi(wn | wn+1)In(wn) dwn (22)

and then using the initial condition I1(w1) = 1. Since each of the densities qi(wn | wn+1) is the
Gaussian function (16), then the integral terms will be Gaussian also, and moreover we can evaluate
each In up to any multiplicative constants which do not depend on wn. In particular each In(wn) is
going to be a Gaussian function, say

In(wn) ∝ N (wn |mn,Sn) (23)
the parameters of which are determined recursively through the use of (19b) giving

In+1(wn+1) ∝
∫ P∏

i=1

N (wn | Ai,nwn+1 + bi,n,Λ
−1
i,n)N (wn | Sn) dwn

∝ N (wn+1 | α′n+1,Γ
′
n+1)

×
∫
N (wn | A′nwn+1 + b′n,Σ

′
n)N (wn |mn,Sn) dwn

∝ N (wn+1 | α′n+1,Γ
′
n+1)N (mn | A′nwn+1 + b′n,Σ

′
n + Sn)

∝ N (wn+1 |mn+1,Sn+1) (24)
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where we have used standard results for the posterior of linear Gaussian models

mn+1 = Sn+1

{
(A′n)>

(
Sn + Σ′−1

n

)−1 (
mn − b′n

)
+ (Γ′n+1)−1α′n+1

}
(25a)

Sn+1 =
(

(Γ′n+1)−1 + (A′n)>
(
Sn + Σ′n

)−1
An

)−1

. (25b)

The equivalent transition model Using the results of the previous section we are now ready to
write the equivalent model for the new transition density. We first recall that up to a normalising
constant our full density is given by

q(w1, . . . ,wN ) ∝
∏
i

qi(wN )

N−1∏
m=1

qi(wm | wm+1), (26)

then for j = 0, . . . , N − 1, and where we evaluate to unity any product for which the lower and upper
limits are equal. Then

q(wN−j , . . . ,wN ) ∝
∫ ∏

i

qi(wN )

N−1∏
m=1

qi(wm | wm+1) dw1 · · · dwN−j−1

=
∏
i

qi(wN )

N∏
m=N−j

qi(wm | wm+1)

×
∫ P∏

i=1

N−j−1∏
n=1

qi(wn | wn+1) dx1 · · · dwN−j−1

=

P∏
i=1

qi(wN )

N∏
m=N−j

qi(wm | wm+1)× IN−j(wN−j). (27)

In particular we have that the transition model becomes, up to normalising constants

q(wN ) ∝
N∏
i=1

qi(wN )× IN (wN ) (28a)

q(wn | wn+1) ∝
∏
i

qi(wn | wn+1)× In(wn), n = 1, . . . , N − 1. (28b)

Note that the term In(wn) gives the additional correction needed to the density obtained by normalis-
ing the product of transition densities alone. Using (19a) we can rewrite this as

q(wn | wn+1) ∝ N (wn | Anwn+1 + bn,Σn)

×N (wn | αn,Γn)×N (wn |mn,Sn)

∝ N (wn | Anwn+1 + bn,Σn)N (wn | ξ̂n, Ŝn) (29)

where

Ŝn =
(
Γ−1
n + S−1

n+1

)−1

(30a)

ξ̂n = Ŝn+1

(
Γ−1
n αn + S−1

n mn

)
. (30b)

These are the parameters which will be used to evaluate the product of experts posterior (15) by
treating it as a single equivalent state space model run backwards in time with the transition model
(29), in particular we can write this as

q(w1, . . . ,wN ) ∝ q(wN )

N−1∏
n=1

N (ξ̂n | wn, Ŝn)N (wn | Anwn+1 + bn,Σn) (31)

which is the density of a linear Gaussian state space model running backwards with states wn

and “pseudo-observations” given by the statistics Ξ̂ = {ξ̂n}N−1
n=1 . Therefore we can normalise
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the marginal components of (31) by running filtering and smoothing conditioned on these set of
pseudo-observations. Finally in our particular applications our state vectors will be wn = zn or
wn = (x, zn)> depending on whether we require the joint distribution or just the distribution of the
shared latent forces. Note in particular that for prediction on a new task we only require the latent
forces, and therefore we are carrying out filtering and smoothing on a model of state dimension M .
We also note that typically this posterior will depend on additional parameters, however now that
we have access to a linear Gaussian state space model for the state variables it is straightforward to
optimise these using standard methods such as expectation maximisation, see [Bishop, 2006].

5 Prediction of Lithium-ion dynamics under varying C-rates
Single Particle Model (SPMe)
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(a) SPMe geometry

(b) Training data

Figure 2: (a) Depiction of the single particle model with
electrolyte (SPMe). Also depicted are the four variables
observed for each experiment, the Lithium-ion concen-
tration for each solid particle c±s and the electrolyte con-
centration at each endpoint, c−e (0−) and c+e (L+). (b)
Trajectories of c+e for our training and test data from the
DFN model. Also shown are the trajectories of the SPMe
model at the same discharge rates, these trajectories are
close for slow discharge at I = 2, and increasingly
diverges as the current increases to I = 10A.

The Doyle-Fuller-Newman model (DFN)
([Fuller et al., 1994]) has become a benchmark
for describing the behaviour of Li-ion batteries.
It accounts for the porous microstructure of
the electrodes using effective parameters to
describe transport at the macro-scale coupled
with spherical particles representative of the
micro-scale. Unfortunately, to provide a
comprehensive description of the underlying
physical mechanism across multiple-scales this
model requires a large system of PDEs over
a complex geometry connected by algebraic
relationships. This makes the model computa-
tionally demanding to forward simulate from,
and therefore impedes calibration and control
applications which would require frequent use
calls to an expensive numerical solver.

This has motivated work in creating simplified
approximations of the underlying dynamics, an
important class are the single particle models
which aim to approximate the electrodes of the
battery by a single representative particle, and
further simplify the dynamics. The single parti-
cle model with electrolyte (SPMe) [Moura et al.,
2017, Marquis et al., 2019] was introduced to
provide a computationally more efficient approx-
imation better suited to control applications. Of
course creating this simplified approximation
necessarily leads to a loss in the physical real-
ism of the model, and therefore the problem of
missing physics in the reduced approximation.
This phenomena can be observed in Figure 2b
where we plot realisations of the DFN and an
equivalently parameterised SPMe model for var-
ious speeds of discharge. At slower discharge

rates the agreement between the models is good, however at higher rates the governing dynamics of
the DFN become increasingly nonlinear, and as such the accuracy of the SPMe approximation begins
to break down. In this experiment we examine the potential of a shared set of latent forces to recover
this information which we refer to the SPMe + LF model.

Model description The SPMe decomposes the battery into three domains: a single representative
particle in the negative electrode, a single particle in the positive electrode and the electrolyte. We
define the concentrations in these domains by c−s (r) for the concentration in the negative particle at a
point given by radius r, and similarly c+s (r) for the concentration in the positive. The concentration
of ions in the electrolyte is denoted by ce(ω) and defined across the entire domain 0 < ω < L. This
domain can be decomposed in the negative electrode domain (0 < ω < L−), the separator domain
(L− < ω < L− L+) and the positive electrode domain (L− L+ < ω < L).
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In all domains we assume that the diffusion coefficient is independent of the concentration value,
so that the model so described gives a system of three linear partial differential equations. The
electrolyte equation is defined to be linear within each subdomain, even though the parameters might
change across subdomains.

The intercalated lithium concentration is modelled by a diffusion equation in a spherical particle that
is representative of the electrode. Therefore, two diffusion equations need to be solved, one for each
electrode, which can be written as

∂c±s
∂t

= D±s
1

r2

∂

∂r

(
r2 ∂c

±
s

∂r

)
, in 0 < r < R±, (32)

∂c±s
∂r

= 0, at r = 0, (33)

D±s
∂c±s
∂r

= ± I(t)

a±L±AF
, at r = R±, (34)

c±s = c±0 , at t = 0, (35)
where D±s is the diffusion coefficient, R± is the particle radius, I(t) is the applied current, a± is the
particle surface area per unit of volume, L± is the electrode thickness, A is the electrode plate area,
F is the Faraday constant, and c±0 is the initial concentration. In the parameters, the superscripts +
and − denote the positive and negative electrode, respectively.

The last PDE of the model is the electrolyte equation, which can be written as

ε(ω)
∂ce
∂t

=
∂

∂ω

(
ε(ω)1.5De

∂ce
∂ω

)
+ (1− t+)J(ω), in 0 < ω < L, (36)

∂ce
∂ω

= 0, at ω = 0, L, (37)

ce = ce0, at t = 0, (38)
where

ε(ω) =


ε−, in 0 ≤ ω < L−,
εs, in L− ≤ ω < L− L+,

ε+, in L− L+ ≤ x ≤ L,
J(ω) =


I(t)
L−AF , in 0 ≤ ω < L−,
0, in L− ≤ ω < L− L+,

− I(t)
L+AF , in L− L+ ≤ x ≤ L.

(39)

Here, ε(ω) is the porosity, De is the ion diffusion coefficient, t+ the cation transference number,
J(ω) is the volumetric reaction current density and ce0 is the initial ion concentration. Each part of
the domain (negative electrode, separator and positive electrode) can have different porosity, so ε
is defined to be piecewise constant where ε−, εs and ε+ are the porosities in the negative electrode,
semparator and positive electrode, respectively.

To produce the discrete operator A for each task the finite volumes method is used to discretise each
of these three PDEs to give a matrix operator over each of the particles and the electrolyte, and these
are then combined to give a single block diagonal matrix over the whole domain. In this particular
application it turns out that the matrices Ap for each task will be the same, because the per-task
variations only occur from changing the input current which enters as a deterministic forcing term.
The results of the previous sections hold in the case of additional deterministic forcing with minor
adaptations, indeed the desired modifications can be achieved by taking the deterministic forcing as
the mean functions for the per-task driving white noise process wp(t), p = 1, . . . , P .

As discussed in Section 2 we will specify our model by way of a sensitivity function sr(ω) where ω
is a spatial co-ordinate of our battery domain. In this model we have effectively three domains, the
two solid particles and the electrolyte which we denote by Ω±s and Ωe respectively. The electrolyte
domain is further subdivided as in Figure 2a for the positive and negative electrodes and the separator
and we denote these further subdomains by Ωie with i ∈ {+, s,−}. This gives a total of five domains
and we are going to allow different perturbations to each domain by specifying a separate model for
each domain. To also extrapolate onto previously unseen models we want this function to depend on
the constant discharge current I, leading to the specification

sr(ω, Ip) =

QΩd∑
k=1

βΩd

k φk,Ωd
(ω, Ip), ω ∈ Ωd, p = 1, . . . , P.
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for Ωd ∈ {Ω+
s ,Ω

−
s ,Ω

−
e ,Ω

s
e,Ω

+
e }, and where QΩ

d is the number of basis functions φk,Ωd
used. In the

experiments reported for this paper we will use a cubic polynomials for each domain.

Data generation The DFN is assumed to capture the true dynamics of the underlying process, and
therefore we use the PyBaMM package [Sulzer et al., 2020a] to simulate trajectories of this model
at various rates of discharge by running simulations with a constant rate of discharge on P = 10
currents evenly spaced in [Imin, Imax] with Imin = 2A and Imin = 8A. We are then interested in
the ability of our model to forward simulate the dynamics using the learned values of the latent forces.
That is we are going to predict trajectories from the model at previously unseen discharge currents
using the learned latent forces. We shall consider two forms of this challenge, first an interpolation
type problem where we aim to predict at a discharge current within the interval [Imin, Imax], and
then the harder task of extrapolating onto a discharge current greater than Imax. For the interpolation
challenge we take I = 7A and for the extrapolation problem we take I ∈ {9A, 10A} to investigate
increasing degrees of extrapolation, these target trajectories are also visualised in Figure 2b.

Results The main results for the prediction experiment are displayed in Figure 3 where we plot
forward simulations of our model conditional on the trained latent force posterior. For the interpolation
problem in Figure 3a we see that the SPMe + LF model does a good job of capturing the true dynamics
of the DFN model with the true trajectory contained entirely within the±2 standard deviation intervals
of the predictive distribution marginals, by comparison the SPMe model does a poor job of capturing
the behaviour of the DFN model, quickly reaching a steady state and missing the qualitative features
of the dynamics.

Inspecting also the more challenging extrapolation we see that our model continues to do a good job
of prediction at 9A, which we recall is a full one amp higher than our maximum training current.
For the most extreme prediction problem at 10A we see that while the performance deteriorates, the
result is still substantially better than the SPMe model alone, indicating that by sharing latent forces
we have successfully learned a model that is able to capture the loss in physics that occurs when
simplifying the complex DFN model to the SPMe version, and so learn a model that can extrapolate
into domains with increasingly nonlinear physics, these results are also summarised in Table 1.

Table 1: Prediction error on unseen discharge experi-
ments. Reported are the mean squared errors in dimen-
sionless quantities for both the SPMe model and N=100
samples from the SPMe + LF model when compared
to the ground truth from the DFN model. See [Sulzer
et al., 2020b,a] for the relevant scaling factors used when
converting to dimensionless variables.

Prediction Current

Name 7 9 10

SPMe 0.017 0.054 0.088
SPMe + LF 0.006 0.005 0.023

Finally, we recall our remarks in Section 3 that
our approximation is as a product of experts,
one arising from a fit to each task SMM inde-
pendently. In Figure 4a we plot the latent force
posterior for four of the independently trained
tasks. We observe that the learned force for the
task with I = 2A is almost constant, we also
recall from Figure 2b that at this low current
discharge the SPMe already provided a good
approximation to the DFN model, and therefore
the fact that a very simple perturbation sufficed
for this task coincides with our expectations.
Conversely for faster discharge we see that more
complex latent forces were required. In Figure
4b we plot the posterior learned from the joint
model, we observe that this full posterior is most similar to that learned for the independent tasks with
the faster discharge, indicating that these tasks have a greater influence on the final learned posterior.

6 Discussion

In this work we have demonstrated that physics informed machine learning allows for an effec-
tive combination of mathematical model reduction, and data informed recovery of any resulting
information loss. While the general recipe of “mathematical model + data-driven term” is simple,
in practice care must be given to the specification of the data-driven term, and how to ensure that
this term allows for efficient inference but also allows for the extraction of succificent information
from the data to be useful for new tasks. In this work we have adopted a multi-task structure to
achieve this information recovery, and then introduced an approximation which allows us to consider
combinations of large numbers of tasks, or tasks with high state dimensions, in a scalable manner.
This has reduced a cubic scaling in the number of tasks to parallel implementations of each tasks.
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(a) Prediction at I = 7A (b) Prediction at I = 9A (c) Prediction at I = 10A

Figure 3: Prediction of electrolyte Lithium-ion concentration, c+(t, L+, from our trained model. (a) Shows the
results of the interpolation type task. (b) Shows the results when predicting at a current higher than the range
used when training, and (c) shows the same results for an even higher current. Also shown are the forward
simulations from the SPMe simplification alone at the same currents.

(a) Per-task posterior for g2(t) (b) Multitask posterior for g2(t)

Figure 4: A example of the learned posterior for one of the three latent forces in the experiment. (a) Shows the
values for this latent force which would have been obtained training on the currents I ∈ {2, 4, 6, 8} Amperes
independently, these are the per-task experts for the posterior (b) Shows the resulting posterior after combining
using the method discussed in Section 4.

We have then demonstrated the promising applicability of this framework for prediction of battery
dynamics under varying discharge rates. While we have considered linear observation models in
principle this method could be extended to more general filtering based approximations such as
the extended Kalman filter [Säarkä and Solin, 2019] for nonlinear problems. Future work will also
consider further quantification of the approximation error introduced by our product of SSM experts
approximation.
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