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Abstract

Near-term prediction of the structured spatio-temporal processes driving our cli-
mate is of profound importance to the safety and well-being of millions, but the
pronounced nonlinear convection of these processes make a complete mechanistic
description even of the short-term dynamics challenging. However, convective
transport provides not only a principled physical description of the problem, but
is also indicative of the transport in time of informative features which has lead
to the recent successful development of “physics free” approaches. In this work
we demonstrate that their remains an important role to be played by physically
informed models, which can successfully leverage deep learning (DL) to project the
process onto a lower dimensional space on which a minimal dynamical description
holds. Our approach synthesises the feature extraction capabilities of DL with
physically motivated dynamics to outperform existing model free approaches on
complex real world sea surface temperature prediction.

1 Introduction

We are interested in the problem of producing near-term predictions of the complex dynamical
systems driving our natural world. Such systems have a significant impact on the daily lives and
safety of our planets’ population, with important examples including precipitation and sea surface
temperature; variables crucial for flood warning and prevention, prediction of cyclogenesis, and
maritime safety. A common theme is the dominance of short-term dynamics by convection – the
transport of material along the stream lines of a vector field. Transport and the reduced role of
diffusion at these time-scales leads to temporal feature preservation, and consequently these systems
have received increasing interest from the machine learning (ML) community [21, 22, 14, 24, 2].

The classical approach to solving these problems in the natural sciences is to specify a model of the
underling physical properties. A properly calibrated mechanistic model described by parameterised
differential operators is able to provide future prediction and generalise to new scenarios, provided this
change of physics can be encoded by some parameter. In a lingua franca of ML we would comment
on the remarkable generalisation and transfer-ability of fundamental physical theories specified by
mathematical models, a demonstration of “the unreasonable effectiveness of mathematics” [26].

Nevertheless, a successful physical theory often requires multiple simplifying assumptions so remov-
ing many of the complexities of real-world phenomena, done correctly this reduction allows the theory
to focus on the most salient qualities of the system. However, this reduction can be insufficient for
detailed prediction in the most complex open world systems we experience in nature, or else require
expensive numerical models [13]. This complexity, combined with the existence of the persistent,
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informative features that characterise convection has led to the development of deep learning (DL)
approaches, notably the dynamics based approaches of [21, 22, 14, 24], or the images-to-images type
approaches adopted by [3, 10, 2]. As DL methods continue to advance it becomes an open question
as to whether one should still attempt to embed mechanistic structure into our models, or if one ought
to go “physics free” [2]. We suggest this stance is information inefficient, ignoring the vast prior
scientific knowledge acquired by human endeavour. This viewpoint has led to the emergence of
physics informed ML [17, 7] which aims to combine the expressive power of modern ML methods,
with the representative power of fundamental physical models. Typically these employ DL surrogates
of the input-output map, then ensuring this map is either constructed to obey some physical principle
[6, 25], or else regularised by a guiding mechanistic model [17, 23, 4, 16, 27, 28].

In this work we use the powerful feature extraction capabilities of modern ML to perform localised
model order reduction by projection onto a subspace spanned by deeply-extracted orthogonal features.
We then show how one can combine flexible methods with minimal physical representations to
advance the dynamics in this reduced space, crucially we construct our method so as to enable a
tighter link between the DL-based encoding and the dynamics than previous approaches. Finally
we demonstrate that this synthesis of DL feature extraction and minimal physics outperforms both
existing model free approaches and state of the art hybrid approaches on complex real world data-sets.

2 Background

2.1 Models for transport and diffusion

∂u

∂t
= −∇ · (α∇u) + w · ∇u (1)

(a) Pseudo-linear transport

∂u

∂t
+ w · ∇u = ∇ · (α∇u) (2a)

∂w

∂t
+ w · ∇w = ν∆w + f (2b)

∇ ·w = 0 (2c)

(b) Rayleigh - Bénard convection

Our goal is to introduce a flexible family of mod-
els for the evolution of a field variable u(x, t)
indexed by spatial coordinates x in a region
Ω ⊂ RD, and temporal coordinate t ∈ [t0, T ].
A starting point for describing diffusion and
transport is the PDE (1), which is parameterised
by a diffusion coefficient α(x, u), governing
smoothing over time, and a transport vector field,
w(x, u), describing the direction of bulk motion,
this a (pseudo-)linear PDE and so in principle
easy to solve. However, this only defers mod-
elling complexity because one must still moti-
vate an appropriate transport vector field. Math-
ematically the most well studied models jointly
describing convective transport are the system 2
of Rayleigh-Bénard equations [20, 8]. However,
solving this system across multiple spatial and
temporal scales, even for known parameters, presents a formidable challenge.

Nevertheless, this motivating idea of forming a conditionally linear PDE has been successfully applied
by [7]. Their approach uses data to inform the vector field w, and then use the Gaussian integral
kernel obtained by solving (1) to motivate an integral-convolution update of the current image of the
field variable. They propose to discard the non-linear components (2b) – (2c) of the system (2) when
advancing the solution, then reincorporate them in the supervised per-time step loss function

Lt =
∑
x∈Ω

ρ(ût+1(x)− ut+1(x)) + λdiv‖∇ ·w(x)‖2 + λmagn‖ŵ(x)‖2 + λgrad‖∇w(x)‖2 (3)

where ρ is a loss function on the space of pixel-images, ût+1 is the predicted surface and ut+1 is the
actual surface. Ultimately, this assumes the linear PDE (2a) is sufficient to capture the dynamics in the
original space, instead we shall attempt to project the dynamics onto a space where this assumption
becomes more plausible, but first we briefly review how to numerically solve a PDE like (1) or (2).

2.2 Ritz-Galerkin discretisation of PDEs

It is typically necessary to solve a PDE problem, like (1), numerically via discretisation, one powerful
method of doing so is to first multiply the problem by a test function v ∈ V̂ , and then integrate to
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form a variational problem. It is typical to choose tests functions which vanish on the boundary, and
so one arrives at the classical variational form of the PDE problem: find u ∈ V such that∫

Ω

∂u(t,x)

∂t
v(x)dx =

∫
Ω

α(x, u)∇u(t,x) · ∇v(x)dx +

∫
Ω

w(x) · ∇u(t,x)v(x)dx (4)

for any test function v ∈ V̂ , this is the weak form of the classical problem (1). In order to numerically
implement this idea one must also replace the trial and test spaces by finite dimensional sub-spaces
and we take V = span

(
{ϕm}Mm=1

)
= V̂ . While there are multiple choices of basis functions

{ϕm}Mm=1, for example one can use the nodal basis functions of the FEM [18], in this work we shall
consider sets of orthonormal basis functions. That is we specify a collection of M basis functions
such that 〈ϕi, ϕj〉L2(Ω) = δij , where 〈·, ·〉L2(Ω) is the L2-inner product.We then search for solutions
to (4) with representation u(t,x) =

∑M
m=1(zt)mϕm(x), where zt ∈ RM is a vector of unknown

coefficients to be determined. Inserting this representation into (4) we achieve a finite-dimensional
projection of the dynamical problem as an ordinary differential equation (ODE)

d

dt
z = Lϕz, (Lϕ)ij =

∫
Ω

α(x)∇ϕj(x) · ∇ϕi(x)dx+

∫
Ω

w(x) · ∇ϕj(x)ϕi(x)dx (5)

This is the Ritz-Galerkin projection of the dynamics onto the subspace V . We use the notation Lϕ
to make it clear that where as the classical operator in the RHS of (1) depended only up on the
coefficient functions parameterising it, the projected problem further depends on the ability of the
basis functions to capture information about the problem, entwining the encoding and the dynamics.
The less informative the basis functions the higher the dimension of M will be needed to faithfully
reproduce the dynamics in the function space. In what follows we refer to the process of forming the
state dynamic matrix L in (5) as the Assembly operation, which involves performing quadratures to
compress the parameter fields α,w and basis functions into an M ×M matrix.

2.3 Proper orthogonal decompositions

Given an ensemble {ut}Nt=1 of field variables over a domain Ω, the proper orthogonal decomposition
(POD) is a technique for extracting an informative modal basis, that is a low-dimensional basis which
captures most of the information or “energy” of the ensemble. The decomposition in POD is more
familiar to the machine learning community under the name principal components analysis (PCA), or
alternatively the Karhunen-Loeve decomposition [9, 11], and involves reconstructing elements of the
ensemble as û =

∑
m zkϕm(x) where {ϕm(x)}Mm=1 are the first M -eigenfunctions of the empirical

covariance matrix of the ensemble ordered by largest eigenvalue.

The idea of using the POD eigenfunctions, as an “empircal basis” onto which to perform the
above Ritz-Galerkin projection for modelling turbulent flows was introduced in [12]. However, the
optimality results concern POD as a linear re-constructor, and do not transfer to any optimality on
the dynamic prediction problem [5]. Therefore, in this work we shall instead use deep networks to
extract our orthogonal subspace, however motivated by the POD idea we shall attempt to still include
some version of this optimal reconstruction to motivate the regulariser in our supervised loss.

3 Methodology

Our objective will be to estimate a future length T sequence of realisations of the process starting
from time t, using only information coming from the length ` history process {uk(x)}tk=t−`. Infact,
we shall also discretise the domain as an nx × ny pixelated grid, and instead aim to estimate
the vectorised field variable u ∈ Rnx×ny . That is we aim to learn an images-to-images map
{ûk}k=t+T

k=t+1 = f(ut−`, . . . ,ut), which also embodies some minimal dynamical representation. To
do so we introduce a DL approach to building a localised version of the POD-basis discussed above.

Deep Galerkin Features

In order to project the inputs onto a reduced space it is required to construct a set of functions, {ϕj}Mj=1,
such that 〈ϕi, ϕj〉L2(Ω) = δij , again we shall work with the vectorised images of these functions
and replace the L2(Ω) orthogonality condition with a quadrature approximation. Furthermore, and
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(a) Single time step of [7] (b) Single time-step of our DOD-Convection model

Figure 2: (a) The method of [7] uses DL to estimate a motion field and then transport the solution in the original
data-space, no further use is made of the latent representations. (b) Our method uses the GalerkinBasis
network to encode the inputs to a latent space, and then advances the solution in the latent space using information
from the encoded variables to parameterise the Convection model, before reconstructing in the data-space

without loss of generality, we can re-scale the domain to have unit volume so that we seek a collection
of vectors such that 〈ϕi,ϕj〉 = δij , ∀i, j = 1, . . . ,M under the Euclidean inner product on Rnx×ny .

Any given input ut can then projected onto an M dimensional space by the Galerkin projection
ΠGalerkin : Rnx×ny → RM where zt = ΠGalerkinut is theM -vector with coefficients (z)j = 〈u,ϕj〉,
for j = 1, . . . ,M . While the POD method discussed in the previous section constructs this basis
vector using the complete set of inputs, we wish to perform our projection using only the most recent
` inputs, relying on the power of DL approaches to extract sufficient information from this reduced set.
Our chosen feature extractor will be the ubiquitous U-Net [19], owing to its demonstrated successes
in performing feature extraction from image data. Since we seek M basis functions we shall consider
architectures which takes as input an image sequence of shape (nx, ny, `), and outputs an image
sequence of shape (nx, ny,M). Our GalerkinBasis model is then a composition of this map, with
an orthogonalisation of the outputs and we write

{ϕ(t)
j }

M
j=1 = GalerkinBasis(ut−`, . . . ,ut) = Orthogonalise ◦ Unet(ut−`, . . . ,ut). (6)

Functionally, we have constructed the basis of vectors ϕ(t)
j = ϕ

(t)
j (uut−`

, . . . ,ut), which depend on
temporally local values. In practice we use a QR decomposition to perform this orthogonalisation.

Linear latent convection model

The GalerkinBasis provides our desired nonlinear transformation of the input sequence onto a
linear space parameterised by z ∈ RM , using only information up to time t. For the remainder of the
prediction horizon we wish to forward solve the problem using the physically informed convection
dynamics on a linear space determined by the extracted features. We shall assume that in this space
the dynamics are reasonably well described by the linear PDE (1), and use our learned features to
carry out a projection of the dynamics onto a local processes obtained via (5).

It remains to parameterise the dynamics with a diffusion coefficient, and a transport vector field. We
shall refer to the model component performing this parameterisation as the Convection model, and
we shall also allow it to be informed by the previous ` observations. Once this component has been
specified we shall advance the latent state according to an updating scheme of the form

α(k),w(k) = Convection(zk−`, . . . , zk), (7a)

L(k)
ϕ = Assembly(α(k),w(k), {ϕm(ut−`, . . . ,ut)}Mm=1) (7b)

zk+1 = zk +

∫ tk+1

tk

Lϕzτdτ (7c)

for k = 0, . . . , T − 1. First the previous values of the latent process are used to build new parameters
of the transport model (7a), these are then combined with the features to assemble the state dynamic
matrix (7b), and finally the linear ODE (5) is solved to give the new state, (7c), and this process is
repeated until a complete set of T latent states are obtained. Our general approach to parameterisation
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of the transporting physical model is therefore similar to that in [7], but crucially our approach
propagates the dynamics in the latent space by way of the Galerkin projection, rather than applied
to the complete surface. This leads to an important difference since any surface now has a finite
dimensional representation by zt our convection step (7a) may be taken as a function of the low
dimensional latent states, that is we can consider a decoder which takes the `×M lagged latent states
and outputs the diffusion and transport field over Ω this is the top-right block of Fig. 2b.

Conversely, the approach taken in [7] requires one to first encode the surfaces, and then decode them
again to estimate the motion field, see Fig. 2a. While this step necessarily creates an implicit latent
representation as a byproduct of this encode/decode step, this representation has no further role to
play in the model dynamics. In contrast, since we have already performed encoding through the
Galerkin projection, we require no further compression allowing the latent representations produced
by our approach to feature more directly in the dynamical description, see Fig. 2b.

4 Experiments

Figure 3: Regions used for the sea surface temperature
experiment

We now apply our method to the large-scale
convective systems encountered in the climate
sciences in order to assess the accuracy and com-
putational efficiency of our method compared to
alternatives. All experiments were conducted on
a single Nvidia GeForce RTX 2060 SUPER GPu
with 8GB of memory. As in [7] we demonstrate
our model on the SST data obtained from the
NEMO (Nucleus for European Modelling of the
Ocean) engine [13] which uses assimilation to
accurately reflect real world temperature history.
We extract the 64 by 64 pixel sub-regions shown
in Fig. 3, and use data from 2016-2018 to train
the model, a give a total of 11935 acquisitions.
We then test on data from the years 2019 using
the same regions giving 3894 test instances. The
regions were selected to capture the complicated

nonlinear mixing that occurs as warm-water is transported along the gulf stream to meet colder water.

We compare the method we have introduced to the physics informed model of [7], as well as a
convolutional LSTM (Conv-LSTM) introduced by [21, 22] which enhances LSTM networks with a
spatial convolution to better model spatio-temporal process, and finally to compare with “phyiscs-free”
approaches we use a U-Net as proposed in [3, 10, 2] which treats prediction as an images-to-images
problem, and makes no attempt to embed recurrent dynamical or physical structure. All models were
implemented in Tensorflow [1], apart from [7] for which we use publicly available code. 2

Table 1: Comparison of methods on the SST data. Average score is the mean squared error (MSE), No. of
parameters is the total number of trainable parameters in each model, and run-time is the mean time per-batch
with the maximum batch size that can fit in memory. We fit our model with M = 16 ϕ-features

AVERAGE SCORE (MSE) NO. OF PARAMETERS RUN-TIME [S]

CONV-LSTM[22] 0.2073 1,779,073 0.43
U-NET [10, 2] 0.1473 31,032,446 0.79
FLOW [7] 0.1304 22,197,736 0.60
DOD-Convec 0.1132 10,106,339 0.48

Results are displayed in Table 1, examining the test error for each method we see that our method
demonstrates superior performance with a lower test error than the purely data-driven approaches
and the more dynamic alternatives. In Fig. 4 we plot a representative sequence from the test set, in
which we observe that our method, row three, seems to be better at identifying the “whorl” pattern
formations that characterise turbulence, but that the U-Net feature extraction also does a job job of

2A PyTorch [15] implementation for the model of [7] is available at https://github.com/emited/flow
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Figure 4: Predicted surfaces from an input sequence of length four, top row, compared to a target output sequence
of length six, second row. from a test set sequence in Region 2 of Fig. 3

identifying these features, but only on a limited time-horizon with the structure degrading as the
sequence continues, this is most noticeable in the loss of structure of the in-flowing cold flux in the
top-right of the images in row four. On the other-hand the method of [7] does a better job capturing
and preserving linear features, this is likely because this method is ultimately solving a linear PDE
(2a), and identifying a convection model from data alone that will do the “violence” [5] of a nonlinear
model from data alone is hard. By projecting to a latent space, and allowing this linear space to be
adaptivly determined by nonlinear transformations of the local inputs we are better able to recover
nonlinear features with a simpler convection model.

5 Discussion

In this work we have combined the powerful feature extraction capabilities of DL, with minimal
physical representations of the dynamics to introduce a physically informed model demonstrating
superior predictive performance on the convective physical processes that dominate the atmospheric
and fluid transport problems pervading our natural world. To the extent that this model is “physically
informed” we have a priori specified only a minimal representation of the dynamics, we justify this by
our desire to avoid overly strong, and so impossible to justify, assumptions on the complex generating
mechanism and therefore maintain as much as possible the ability of the model to learn the underlying
dynamics from data. Crucial to this has been our efforts to ensure that the latent representations
formed by DL-encoding are more strongly entwined with the dynamics of the process than previous
approaches, leading to a model that demonstrates superior predictive performance, and improved
recovery of temporally persistent nonlinear features.
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