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Abstract

Deep learning and machine learning have recently attracted remarkable attention in
the inverse design of nanostructures. However, limited works have used these tech-
niques to reduce the design complexity of structures. In this work, we present an
evolutionary-based method using manifold learning for inverse design of nanostruc-
tures with minimal design complexity. This method encodes the high dimensional
spectral responses obtained by electromagnetic simulation software for a class of
nanostructure with different design complexities using an autoencoder (AE). We
model the governing distributions of the data in the latent space using Gaussian
mixture models (GMM) which then provides the level of feasibility of a desired
response for each structure and use a neural network (NN) to find the optimum
solution. This method also provides valuable information about the underlying
physics of light-matter interactions by representing the sub-manifolds of feasible
regions for each design complexity level (i.e., number of design parameters) in the
latent space. To show the applicability of the method, we employ this technique
for inverse design of a class of nanostructures consisting of dielectric metasurfaces
with different complexity degrees.

1 Introduction

Many researchers have conducted extensive research on inverse design of nanophotonic structures
due to their unique features in manipulating light in sub-wavelength regime with applications in signal
processing [1], image processing [2], lens design [3], bio sensing [4], computing[5], reconfigurable
metasurfaces [6], microresonators [7], etc. Deep learning (DL) and machine learning (ML) techniques
are recently superseding the conventional approaches for design of nanostructures (e.g., genetic
algorithm, exhaustive search, topology optimization, etc.) due to their capability in extracting features
from high dimensional data and accelerating the inverse design [8–10]. However, few works address
the application of ML and DL for understanding the underlying physics of these structures. In a more
intelligent setting, DL has been used for knowledge discovery and this knowledge in turn will be
used to accelerate the design process [11–21]. With advances in computational power and distributed
DL platforms [22], most of the works do not leverage the intelligence aspect of artificial intelligence
(AI), and a large portion of this vast power is wasted for unnecessary complexities in the structures.
The current methods are mainly based on the combination of employing neural networks (NN) and a
cyclic search. Even though this combination can reduce the complexity of the design problem, a good
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portion of computation is still invested in the cyclic search part [23]. This necessitates the urgency of
providing an intelligent approach to address the aforementioned issues.

In this paper, we present a new approach based on manifold learning [24–26] to accelerate designing
of nanophotonic structures for achieving a desired response (i.e., reflection spectra of light in a certain
bandwidth). The technique finds the desired nanostructures with minimal fabrication complexity
by evolving from an initial design to the least complex nanostructure. In addition to reducing the
design complexity, this approach provides priceless information about the underlying physics of
nanostructures through visualization of the responses in the latent space.

2 Method

The forward problem in designing nanophotonic structures is finding the response for a set of input
design parameters. We consider this as the mapping F : X → Y , where x ∈ X is a vector of design
parameters and y ∈ Y is the corresponding response. Electromagnetic (EM) simulation softwares
like COMSOL Multiphysics, CST Microwave Studio, Lumerical, etc. are the common tools for
solving the forward problem in the nanophotonics society. However, the goal of inverse problem
is to find the set of design parameters that results in the desired response, and we consider this
unknown relation as the mapping G : Y → X . In other words, we seek to find x such that x = G(y∗).
Evaluating G is not possible as we don’t have access to G. So we formulate this problem in terms of
F , which is available for us, within an optimization framework:

x∗ = argmin
x∈X

Loss(y,y∗) (1)

where y = F(x), y∗ = F(x∗), and Loss can be any of the available loss functions that suit the
problem (e.g. mean squared error (MSE)). This problem does not have a closed form formulation
due to the complexity of the input to output relation in nanophotonic structures and also suffers from
non-convexity and non-uniqueness challenge (i.e., for a desired response, there might be multiple sets
of design parameters) [16]. The current methods for solving inverse problems in nanophotonics are
based on brute-force search methods for finding the vector xi that results in the minimal MSE (i.e.,
||yi − y∗||22) or limit themselves to a certain part of the design space and model the inverse mapping
to find the local minimum solution [27–29]. However, these methods do not consider the design
complexity of the structure in solving the inverse problem and converge to a highly complex structure,
while a coarser structure has the ability to produce comparable results. In this research, we use a
manifold learning-based method to form the feasible set of responses for each design complexity
in the latent space Z for a class of nanostructures, and solve the inverse problem with the minimal
design complexity. To show the capability of our method, we apply this approach to inverse design
of a class of nanostructure with different design complexities. Figure 1 shows the unit cell of the
nanostructures, consisting of one to four ellipsoids of HfO2 on the top of SiO2 substrate [30]. As
shown in Fig. 1, the number of design parameters and complexity of the structure increases as we
add more ellipsoids. For each structure, we randomly generate a set of design parameters and find
the corresponding reflection responses using EM software (i.e., Lumerical). Then we train an AE
to reduce the dimensionality of the response space Y . To model the distribution of the manifold of
feasible responses for each structure, we use GMM [31]. Finally, we train a NN from the design to
the response space and use that to find the set of design parameters for a desired response.

The first step in our design approach, is learning the manifold of the responses in the latent space by
reducing the dimensionality of the response space. A popular and efficient approach for non-linear
dimensionality reduction (DR) is using AE [32]. AEs are artificial NNs which have the same input
and output and a bottleneck layer that represents the latent space, Z . The encoder (φ : Y → Z) and
decoder (ψ : Z → Y) are the solutions to the following optimization problem:

φ, ψ = argmin
φ,ψ

N∑
i=1

||yi − ψ(φ(yi))||22 (2)

To train our AE, we generate a set of randomly selected design parameters ({xi ∈ X |i = 1, ..., N})
for the structures in Fig. 1 and find the corresponding reflection responses ({yi ∈ Y|i = 1, ..., N})
using the finite difference time domain (FDTD) technique. Using the encoder part of the AE, we
can reduce the dimensionality of the reflection responses into the latent space and form the feasible
regions covered by each class of structures.
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Figure 1: Schematic of the nanostructures with different complexity levels (i.e., number of design
parameters ) composed of unit cells with a layer of SiO2 and ellipsoid nano antennas of HfO2. The
design parameters are periodicity of the unit cells (p ∈ [500, 900] nm) and radius of the ellipsoids
(Ri ∈ [60, 200] nm). The number of design parameters (i.e., design complexity) are shown below
each structure.

To model the distribution of the manifold of the feasible response for each structure in Fig. 1,
we use GMM. We consider the probability density function (pdf) of each structure as fZ(z) =∑N

i=1 αigi(z), where
∑N
i=1 αi = 1 and the gi are Gaussian distributions with different means and

covariance matrices (gi(z) = N (z;µi,Σi)). We used expectation maximization [33] method to
estimate the parameters θ = (α1, ..., αN , µ1, ..., µN ,Σ1, ...,ΣN ), given a series of observations
z1, z2, ..., zM . The goal in this optimization problem is to find a θ maximizing the log-likelihood
l(θ; z1, ..., zM) =

∑M
i=1 log(

∑N
j=1 αjN (zi;µj,Σj)).

After reducing the dimensionality of the response space of the training data and modeling the manifold
of the feasible set of responses for each structure in the latent space using GMMs, we use Algorithm 1
for evolutionary design of nanostructures. First we reduce the dimensionality of the desired response
using a trained AE. Second, we find the log-likelihood of being inside the feasible set of each class
of structures in Fig. 1. We select the structures with log-likelihood larger than a threshold as the
candidates of the solution to our inverse problem. Finally, for each design candidate we use a trained
NN to search over the design space for the solution (i.e., structure that has a similar reflection response
to the desired response). We use MSE as our loss function to predict the responses for any given set
of design parameters.

3 Results

To train our model, we generate a random set of design parameters for structures in Fig. 1 and find
their corresponding reflection spectra. We sample the period of the unitcells (p) between 500 nm and
900 nm and the radius of HfO2 ellipsoids between 60 nm and 200 nm, with the fixed thickness of 350
nm in order to support reflection mode operation and satisfy the fabrication constraints. We excite the
structures with normal incident light polarized in x-direction and conduct full-wave electromagnetic
simulations with commercial Lumerical FDTD software to find the reflection responses of the
structure in the wavelength of interest from 300 nm to 850 nm. These structures can potentially
exhibit Fano-type resonances as discussed in [30].

We trained an AE to reduce the dimensionality of the response space from 550 to 2. Based on the
manifold of the responses in Fig. 2, the Four scenario exhibits the most variate range of spectral
responses in the latent space due to the dipole resonances in x-direction (co-polarized) and strong
coupling of these resonances in y-direction (cross-polarized). It is also clear from Fig. 2 that Three

Algorithm 1: Evolutionary Design Algorithm
Result: Optimum Design with Minimal Complexity
Step 1: Map the desired response into the latent space using the trained AE
Step 2: Find the log-likelihood of the feasibility of the response for each design complexity and
select design candidates with higher log-likelihoods

Step 3: Use feed forward DNN to search over the design space of the candidates and find the
optimal solution
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Figure 2: Representation of the responses in the latent space for the structures shown in Fig. 1.
The Four structure, which has the highest complexity, has largest feasible region while the One has
smallest feasible region. The changes in the responses corresponding to the movement in the latent
space is shown as inset.

scenario has a substantially smaller feasible region in comparison with the Four scenario due to
reduction in the co-polarized resonance and cross-polarized coupling. The BLBR scenario resembles
the Three scenario since the co-polarized resonance is much stronger than single ellipsoid along the
co-polarized direction which results in a similar feasible range of responses as the Three scenario.
This is also supported by the feasible region of BLTL which is much smaller than BLBR as the BLTL
resonances are too weak to be coupled and reach the variety of BLBR. The One scenario exhibits the
smallest convex hull with lowest resonance and coupling amongst all the scenarios as expected. In
addition to the range of feasibility, the latent space representation provides insightful information
about the classes of responses of in different structures. As Fig. 2 shows, the resonances shift to left
as we move counter-clockwise around the edge of the responses of the Four structure. Also moving
from the outside of the feasible set toward the center results in significant reduction in the amplitude
of the resonances. This shows that adding more ellipsoid nanoantennas results in expansion of the
manifold of responses in a wide range of frequencies, and peaks with higher quality factors become
achievable.

The results for two inverse designs are shown in Fig. 3(a) and (b) with the corresponding optimal
design parameters, normalized mean squared error (NMSE), and log-likelihood for each structure in
Table 1 and Table 2, respectively. The spectrum in Fig. 3(a) corresponds to a Gaussian spectrum with
620 nm as the centering wavelength. It can be concluded from the results that the Four ellipsoids

Table 1: Design parameters (in nm), NMSE, and log-likelihood for responses in Fig. 3(a). T, B, L,
and R refer to Top, Bottom, Left, and Right, respectively. R1 is the radius along x-axis and R2 is the
radius along y-axis for each ellipsoid.

Design Parameters

Structure p R1BL R2BL R1BR R2BR R1TL R2TL R1TR R2TR NMSE log(p)

One 897 179 64 0 0 0 0 0 0 0.892 -656.51
BLTL 546 79 79 0 0 153 132 0 0 0.876 -457.69
BLBR 809 153 143 163 121 0 0 0 0 0.459 -4.14
Three 780 168 144 168 144 145 98 0 0 0.397 -4.06
Four 833 823 160 823 160 823 160 160 121 0.238 -0.97

4



Table 2: Design parameters (in nm), NMSE, and log-likelihood for responses in Fig. 3(b). T, B, L,
and R refer to Top, Bottom, Left, and Right, respectively. R1 is the radius along x-axis and R2 is the
radius along y-axis for each ellipsoid.

Design Parameters

Structure p R1BL R2BL R1BR R2BR R1TL R2TL R1TR R2TR NMSE log(p)

One 683 64 64 0 0 0 0 0 0 0.892 -434.96
BLTL 882 787 111 0 0 174 89 0 0 0.880 -133.34
BLBR 736 132 121 132 132 0 0 0 0 0.378 -5.59
Three 700 168 121 168 98 121 98 0 0 0.411 -8.00
Four 700 823 823 823 160 121 121 160 121 0.416 -2.69

(a) (b)

Figure 3: Results for two desired responses and optimized responses achieved by the structures in Fig.
1 using the evolutionary design algorithm. (a) A Gaussian shape reflection response with mean at 620
nm and sigma 6 nm and (b) a Gaussian with mean at 550 nm and sigma 10 nm. The corresponding
design parameters, NMSE, and log-likelihood are in Table 1 and Table 2, respectvely

structure results in a lower NMSE while BLTL and the One cannot produce a response similar to
the desired spectra. For the desired response shown in Fig. 3(b), however, the Three and BLBR
structures result in a better design and lower NMSE in comparison to the Four which shows that
the simpler structure would be a better option. This supports our claim regarding the ability of the
evolutionary-based method for solving the inverse design with minimal design complexity. The
response in Fig. 3(b) resembles a weaker cross-polarized coupling of dipole resonances compared to
the desired response in Fig. 2 (b). This supports the lower NMSE of the predicted responses by BLBR
and the Three for the desired response in Fig. 3(b). However due to the lack of strong co-polarized
and cross-polarized couplings in BLTL and the One scenarios, the selected desired responses are not
feasible with these two structures.

4 Conclusion

In this paper, we demonstrated that the proposed evolutionary design approach could significantly
facilitate the inverse design of nanophotonic structures and provides the optimal solution while
evolving toward the least complex structure. By providing multiple solutions (using feasibility
score provided by GMM) with different degrees of freedom, our model guides the user to select
the best structure with the simplest design complexity. By applying the technique to a dielectric
metastructure design problem, we achieved the optimum nanostructure for a certain desired response
while minimizing the geometrical complexity. Lastly, this can be extended to a wide range of design
problems- fluid mechanics, material science, and electronics, to name a few.
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