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Abstract

The rising availability of large volume data, along with increasing computing
power, has enabled a wide application of statistical Machine Learning (ML) al-
gorithms in the domains of Cyber-Physical Systems (CPS), Internet of Things
(IoT) and Smart Building Networks (SBN). This paper proposes a learning-based
framework for sequentially applying the data-driven statistical methods to predict
indoor temperature and yields an algorithm for controlling building heating sys-
tem accordingly. This framework consists of a two-stage modelling effort: in the
first stage, an univariate time series model (AR) was employed to predict ambient
conditions; together with other control variables, they served as the input features
for a second stage modelling where an multivariate ML model (XGBoost) was
deployed. The models were trained with real world data from building sensor
network measurements, and used to predict future temperature trajectories. Ex-
perimental results demonstrate the effectiveness of the modelling approach and
control algorithm, and reveal the promising potential of the mixed data-driven ap-
proach in smart building applications. By making wise use of IoT sensory data
and ML algorithms, this work contributes to efficient energy management and
sustainability in smart buildings.

1 Introduction

Internet of Things (IoT) technologies introduce a new generation of smart building solutions [1, 2].
It embeds network platforms and advanced data analytics with the Building Management System
(BMS) which integrates lighting, heating, ventilation, and air conditioning (HVAC), safety, and se-
curity, turning sensory data into to actionable decisions. IoT has a wide spectrum of applications
such as smart facilities maintenance and efficient energy management [3], an example is using tem-
perature, CO2 and humidity sensors to provide the feedback for HVAC systems, or using motion
detectors for lighting control. An IoT ecosystem normally consists of a comprehensive sensor net-
work for data collection, communication, and networking, and data consuming solutions. Machine
Learning (ML) plays an increasingly significant role in IoT decision-making (AI-IoT). The goal of
building intelligence is to build an automated, intelligent, and decentralised decision-making system
that monitors building service status and interprets them as machine-readable commands. In this
setting, sensor network sits in the centre; along with data consuming platforms, it can yield signifi-
cant savings for operations and maintenance, without degrading occupants’ comfort level. Take for
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example the heating and cooling systems, which can account for up to 60% of a building’s overall
use [4], by efficiently learning use patterns and managing on-off controls, it can reduce energy usage
by 30% as reported. This serves as the main motivation for heating control.

Traditional building management solutions use complex building dynamics to achieve control ob-
jectives; more recently emerging techniques such as big data analytics [5], ML [6, 7, 8] and deep
reinforcement learning techniques have been deployed [9]. A typical scenario of application is to
meet a target temperature at a pre-set time. In this pursuit, we aim to decide the best time to switch
on the radiator, and to switch off thereafter without degrading comfort. These are the two optimi-
sation tasks: the first helps avoid wasting utility in case the valve is turned on too early; the second
gives obvious energy-saving bonus. This is particularly the case when one finishes work and asks
BMS to heat up a room before actually arriving home. This paper focuses on the first task, while the
solutions provided can be safely extended to the second. The challenge is to accurately predict the
warm-up time, and we introduced a sequential, data-driven modelling approach to tackle it.

2 Related work

Applying ML [6, 7] and big data analytics [5] to IoT (particularly smart buildings) has been an
increasingly hot area in recent years. Some previous work on modelling and controlling building
energy systems were summarised, for example, in [10, 11, 12, 13]. Mathematical (structured) mod-
elling (also termed the ’white box’ approach) has long been used in simulating natural phenomenon
such as heat diffusion, it’s well constructed based on physical laws of thermal dynamics, and nor-
mally comes in the form of partial differential equations with some stochastic characteristics (e.g.
the state-space models describing a dynamical system). For example, [14] describes a mathemati-
cal model for heating modelling in residential buildings, their results demonstrate the effectiveness
of the model-based heating control strategy. Non-linear systems can also be designed by purpose
for special buildings such as [15]. Mathematical models have intuitive interpretability and mature
solvers. However, they may not be as flexible as statistical models which are learning-based, data-
driven, and independent of the physical system. In statistical modelling (also termed ’black box’
approach), each signal is treated as an input feature, it’s thus easier to take control over the vari-
ables fed in. The models are based on statistical principles which analyse the relation between input
features and the output variable. Since statistical models are physics-independent, they can be uni-
versally used to model various phenomena by learning from data. The disadvantage, however, is
also obvious: they depend on the partial info contained in the data used to train it. Following the
data allows fast adjustments but also introduces bias. Results from a data-driven approach can yield
good accuracy, but care should be taken on generalisation. [16] emphasizes the importance of spe-
cific tuning for each ML model used in the prediction of buildings heating and cooling loads. [13]
gives a review on the use of several ML methods in forecasting building energy performance, and
concluded that all models provide reasonable accuracy given large samples and fine tuned hyper-
parameters. A compromise could be combining both the ’white box’ and ’black box’ approaches
to form a semi-structured modelling approach (the ’grey box’ or hybrid approach), in which known
laws are represented by deterministic terms, and unknown effects or uncertainties can be embedded
via learning-based models (e.g. a neural network architecture). This bridges the gap between physi-
cal and statistical modelling: it enables prior info to be embedded, the building dynamics captured,
and gives a reliable description of the uncertainties [17], and results in a simpler models as compared
to pure physics based models [18].

While the power of the data driven approach has been proved in many smart building settings (e.g.
HVAC control [19, 20]), it also has some drawbacks with estimation [21] and forecasting. Common
ML models, Random Forest for example, rely on instantaneous, cross-sectional ambient info to
make inference about a response. In most situations, however, collection of the input features may
not be in a timing manner. Even if the data can be collected and processed in near real-time, there
is inevitably a delay in forecasting, i.e. the algorithm can only make inference about the current
state where surrounding information is provided. Therefore, these methods are more suitable for
inferencing a currently unobservable response variable rather than making swift predictions. The
game changes when future information becomes available. Future information itself can be predicted
in a structured way if it follows some dynamics, and in sensor network analysis particularly, most
signals are time series sequences and there are mature techniques well suited for forecasting. For
example, there are analytical forms such as an autoregressive process, and architectures such as
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an LSTM network for analysing sequential data. This modelling approach serves as a pathway to
obtaining future information about the quantity of interest. Once the future information is estimated
to certain accuracy, they can be fed into common ML models to make predictions for the response
variable. This motivates the two-stage forecasting framework.

3 A Two-stage Sequential Modelling Approach

We proposed a two-stage modelling procedure for household indoor temperature prediction and
heating control. The framework was shown in Fig.1. It’s a mixed data-driven method which com-
bines input control and learning. The sensory data were classified into two categories: control and
non-control variables. In the first stage, each non-control variable time series was treated as a uni-
variate process and time series models (e.g. AR) were employed to make predictions for a future
period; in the second stage, the control variables (with future values set according to some control
rules such as on/off), together with the non-control variable predictions, were fed into a multivariate
ML model (pre-trained using historically measured data) to yield final predictions for the output
quantity (indoor temperature). In later contexts, the first practice was labelled ‘ambient conditions
modelling’, while the second was termed ‘indoor temperature modelling’.

Figure 1: The two-stage sequential modelling procedure

4 Building Management System (BMS) and Sensor Network

A BMS is a comprehensive network enabling data flow between different functional components
and making decisions based on pre-defined rules and algorithms. The front ends are sensors, which
monitor and detect changes in environmental and device variables such as temperature, air quality,
valves and occupancy to optimise a building’s operation services like HVAC over time. Data was
collected by a sensor unit which accommodates an array of sensors such as temperature, lighting,
fan, radiator meters, Passive Infrared motion (PIR) sensor, rain detector, and relative humidity (RH)
reader. It flows into data containers and processors where data storage, aggregation, transformation,
inference and prediction happen. The challenge is to deploy the system in a real-time environment
at scale. For example, data may be collected overtime in an augmented manner so that time-variant
adjustments can be made. Retraining a predictive model could be either done online (streaming
data) or offline (batch data). For large learning tasks, transfer or incremental learning could be
leveraged via a de-centralised data consuming architecture. These put requirements on both the
physical and software sides. For example, sensors may need to talk to each other wirelessly, data
needs to be transported either locally (e.g. offline training) or on cloud, and processors may need
to communicate for collaboration purpose. Terminal devices such as water tanks, controllers (e.g.
radiators) and air conditioners need to be plugged in BMS to enable an state-action feedback loop
for services control. In addition, extensibility is desired so that new sensors, gateways (5G highway
for example) and devices, can be flexibly added, upgraded and integrated into the existing BMS.

Sensors play a key role in engineering scenes such as Cyber-Physical Systems (CPS), IoT and Smart
Building Networks (SBN). Thanks to the increasing capacity of sensor network, large volume of
data becomes available for analysis. Making wise use of sensory data could potentially improve
energy use and achieve better building management. In this research, multiple functional sensors
were installed in a house environment (Fig.2) to monitor quantities such as temperature, lighting,
fan, heating, occupancy, rain and humidity statuses. In total there were 54 sensors used. The details
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of the set of sensors deployed were shown in Table.1 and Table.2. These sensors together formed a
network.

Table 1: Sensor categories

Sensor type Sensor code
(functionality abbreviations) Sensory data type Example instance(s)

Temperature TMP numeric 0-1-TMP1
Lighting AMB/LTC Boolean(0/1) 0-1-AMB1/0-1-LTC1
Fan FAN Boolean(0/1) 1-14-FAN1
Radiator HTC/HTV Boolean(0/1) 1-12-HTC1/1-1-HTV1
Occupancy PIR/EPIR/OPC Boolean(0/1) 1-13-PIR1/0-1-EPIR1/1-8-OPC1
Rain RAIN Boolean(0/1) 0-1-RAIN2
Relative humidity HYGR numeric 0-1-HYGR1

∗Sensor naming convention: the first number implies type of space, i.e. 0 refers to outside space and 1 is house. The
second number gives the zone area in the building (see the floor layout plan). The strings are sensor code, followed by
sensor number.

Table 2: Physical mapping of sensor layout
Zone area of sensor location Sensors deployed

0-1 Drive 0-1-AMB1, 0-1-EPIR1, 0-1-HYGR1, 0-1-LTC1, 0-1-RAIN2, 0-1-TMP1
0-2 Garden 0-2-AMB1, 0-2-HYGR1, 0-2-TMP1
1-1 Basement 1-1-HTV1, 1-1-HTV3
1-3 Kitchen (Floor 0) 1-3-AMB1, 1-3-HTC1, 1-3-HYGR1, 1-3-LTC1, 1-3-OPC1, 1-3-PIR1
1-7 Hall (Floor 0) 1-7-AMB1, 1-7-OPC1, 1-7-PIR1, 1-7-TMP1
1-8 Reception1 (Floor 0) 1-8-AMB1, 1-8-HTC1, 1-8-OPC1, 1-8-PIR1, 1-8-TMP1
1-9 Sitting Room (Floor 0) 1-9-AMB1, 1-9-HTC1, 1-9-HYGR1, 1-9-LTC1, 1-9-OPC1, 1-9-PIR1
1-12 Bedroom3 (Floor 1) 1-12-AMB1, 1-12-HTC1, 1-12-HYGR1, 1-12-LTC1
1-13 Walk in Wardrobe (Floor 1) 1-13-AMB1, 1-13-HTV1, 1-13-HTV4, 1-13-LTC1, 1-13-OPC1, 1-13-PIR1
1-14 Ensuite Bathroom (Floor 1) 1-14-AMB1, 1-14-FAN1, 1-14-HTC1, 1-14-HYGR1, 1-14-OPC1, 1-14-PIR1, 1-14-TMP1
1-15 Master Bedroom (Floor 1) 1-15-AMB1, 1-15-LTC1, 1-15-OPC1, 1-15-PIR1, 1-15-TMP1

Figure 2: Building floor layout (left: Floor 0, right: Floor 1)

5 Experiments

5.1 Data Pre-processing

The data was sliced from a large dataset spanning over the whole year of 2019 in the house; only
December data (‘2019-12-01 00:00:00’ to ‘2019-12-30 14:39:00’) was chosen because it demon-
strates the use of heating. The raw data consists of 44640 datapoints and 54 sensor signals. Prior
to formal modelling, data pre-processing was performed to clean data and perform exploratory data
analysis.

In this task, we aim to predict the indoor temperature (the response variable) in the master bedroom
sitting on the first floor, i.e. 1-15-TMP1. All 54 signals were used as raw data, and a feature selection
process, based on feature importance ranking, was performed. Some sensors might have different
sensing frequencies; to unify different sampling rates, all data was resampled every 1 minute, which
generated mean values within the sampling interval. Five raw temperature histories, demonstrated
later to be most correlated with 1-15-TMP1, were shown in Fig.3. It’s not surprising to find that,
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the temperature in Reception1 (1-8-TMP1) closely follows the target temperature (1-15-TMP1) as
they are located down and upstairs. The same applies to 1-8-TMP1 and 1-14-TMP1. The Hall
temperature (1-7-TMP1) deviates more as it’s an open transition area; and the outside temperature
0-1-TMP1 is affected by the weather and thus more variable.

Figure 3: Raw temperature data

Two outliers, identified based on response variable values, were excluded from the dataset, and
no missing value detected. Two dimensions were added: hours and weekday information were
generated from timestamp info. Weekdays were category type and encoded into binary integer
features. After feature engineering, the data was split into training and test sets, with feature matrix
size of (42638, 61), (2000, 61), respectively. After feature engineering, the feature space contains
53 original features, 7 weekday indicators, and one hours info column.

Before modelling, a feature selection process was performed to for dimension reduction purpose.
A simple Random Forest (RF) model was trained and the resulted permutation importance was
calculated to rank the 53 raw features, the top 15 ranked features are shown in Fig.4. As expected,
the downstairs room temperature 1-8-TMP1 is important in predicting the response variable, i.e. the
temperature in bedroom 1-15 (1-15-TMP1). Other close friends are 1-14-TMP1 and 1-13-HTV1:
the next-door temperature and the status of the valve controlling underfloor heating of Room 1-15,
respectively. A roughly monotonic relation between 1-14-TMP1 and 1-15-TMP1 is observed in
Fig.4. Besides, 1-15-TMP1 also exhibits some patterns with certain weekdays and hours in a day.
Based on the importance analysis, the top 15 features, as listed in Fig.4, plus the remaining weekday
features, which totals 19 variables, were selected. As stated, these 19 features are classified into
two categories: control and non-control variables. In a first trial, the underfloor heating valve status
(1-13-HTV1) was employed as the single control variable. A second trial also included the next-
door temperature 1-14-TMP1 and downstairs temperature 1-8-TMP1 as extra control variables for
achieving more aggressive control. The rest 18 (16 in the second case) variables served as non-
control features.

Figure 4: Left: top 15 RF-based permutation importance, right: correlation between 1-14-TMP1
and 1-15-TMP1
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5.2 Ambient Conditions Modelling

The first step in the two-stage modelling practice is to model the non-control variables, i.e. the ambi-
ent conditions. All the 18 features, except for weekdays and hours, need to be learned from history
and predicted for a future period. Each variable trajectory was treated as a single univariate time
series and modelled using autoregressive regression (AR). AR is a mature technique for modelling
sequential data, the general form of an AR(p) model can be described as

Xt = µ+ α1Xt−1 + α2Xt−2 + ...+ αpXt−p + εt (1)

where X is the time series, µ is the constant offset, and ε is the error term. αs are the AR parameters
to be estimated using historical realisations. For stationary signals, α lies in (-1,1).

We iterated through all predictable non-control features using original scale values. By trial and
error, a uniform, absolute threshold of 0.1 was employed for partial autocorrelation function (pacf )
to identify all statistically significant lags for each AR model (Fig.5c). All AR models were trained
with the training dataset which spans from ’2019-12-01 00:00:00’ to ’2019-12-30 14:39:00’, while
the test set, which spans from ‘2019-12-30 14:40:00’ to ‘2019-12-31 23:59:00’, was reserved for
comparison purpose. The time span for future prediction was from ‘2019-12-30 14:40:00’ to ‘2019-
12-30 18:00:00’ (totalling 201 datapoints). The future prediction scope partially overlapped with
the test set horizon. They were however used for different purposes: the future prediction was used
to test control variables and the control strategy, while the test set was mainly designed for eval-
uating model performance. In the AR model, a rolling forecasting strategy was used, in which a
single prediction was made at each time step, and the prediction was appended to historical data to
incrementally augment the training size. An example of the predicted trajectories versus the real test
signal was shown in Fig.5a and Fig.5b, also accompanied is the control variable 1-13-HTV1. The
underfloor heating valve history roughly coincides with the indoor temperature trajectory, showing
a delayed and less evident influence on 1-14-TMP1. The estimated AR model gives reasonably well
predictions agreeing with the average trend due to its memory characteristic, although deviations ex-
ist, we will see later in the boosting tree case that it doesn’t affect the indoor temperature predictions
to a significant level, as trees are grown in a way such that only interval values matter due to the
nature of tree splitting. The control variable 1-13-HTV1 was binary and takes values 0/1 (off/on).
Its value was set to 1 for all future timestamps, representing a constant on status, which is in line
with our goal of warming up the room.

(a) Historical and controlled/predicted values for 1-13-HTV1 and 1-14-TMP1

(b) 1-14-TMP1 predictions (zoom-in of (a) on date 30/12/2019) (c) pacfs vs lags (selected: 1, 2, 3, 7)

Figure 5: Ambient conditions modelling
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5.3 Indoor Temperature Modelling and Control

In the second stage, all historical and forecasted future feature values were fed into a multivariate
ML model to produce predictions for the response variable 1-15-TMP1 on the same future scale
(‘2019-12-30 14:40:00’ to ‘2019-12-30 18:00:00’). Before building the ML model, a standardization
procedure was applied to scale the numeric variables in Table.1. This is useful when distance-based
method (e.g. nearest neighbors) or dimension reduction techniques are to be used. For simplicity, we
only use one model, i.e. Extreme Gradient Boosting Machine (XGBoost), to demonstrate the second
stage modelling process. We first described the case where single control variable (1-13-HTV1) was
used; two extra control variables, i.e. 1-14-TMP1 and 1-8-TMP1, were introduced in a second trial.
Note that, the future predictions are not comparable to the test ground truth labels, as the underlying
control variable condition(s) are different.

A grid search was implemented to tune five model parameters, namely, number of trees, tree depth,
learning rate, subsampling rates of observations and features when growing trees. The fine-tuned
model used max. 50 trees, each tree with a max. depth of 4, learning rate of 0.3, row and column
subsampling rates of 0.6 and 0.8, respectively. The trees essentially meshes the feature space and
produces intervals for each variable. As an example, part of the first tree boosted is shown in
Fig.6. The model sequentially and frequently employs 1-8-TMP1, 1-14-TMP1, 1-13-HTV1, etc. to
segment data instances, which is consistent with the feature importance ordering in Fig.4.

Figure 6: Depth-two diagram of the first boosted tree generated by XGBoost algorithm

On a future time scale, four control experiments were designed, as shown in Table.3. Three features
were employed as control variables: 1-13-HTV1, 1-14-TMP1, and 1-8-TMP1. They are closely
related to 1-15-TMP1, as evidenced in Fig.3 and Fig.4, thus may give hints on inferring 1-15-TMP1.
Other non-control variable values were directly obtained from the first stage AR predictions. In all
the four cases, control(s) were applied starting at the time 16:00 and onwards. The experiments
results were presented in Fig.7. The curves were smoothed using a 20-min moving average.

Table 3: Control experiments design
case with control no control

1 1-13-HTV1 = 0/1, 1-14-TMP1 = 26.5◦C, 1-8-TMP1 = 22◦ C 1-13-HTV1 = 0, 1-14-TMP1 = 26.5◦C, 1-8-TMP1 = 22◦C
2 1-13-HTV1 = 0, 1-14-TMP1 = 26/27◦C, 1-8-TMP1 = 22◦C 1-13-HTV1 = 0, 1-14-TMP1 = 26.5◦C, 1-8-TMP1 = 22◦C
3 1-13-HTV1 = 0, 1-14-TMP1 = 26.5◦C, 1-8-TMP1 = 23◦C 1-13-HTV1 = 0, 1-14-TMP1 = 26.5◦C, 1-8-TMP1 = 22◦C
4 1-13-HTV1 = 0/1, 1-14-TMP1 = 27◦C, 1-8-TMP1 = 23◦C 1-13-HTV1 = 0, 1-14-TMP1 = 26.5◦C, 1-8-TMP1 = 22◦C

Fig.7(a) shows the effect of control of 1-13-HTV1. The valve remained silent first (e.g. setting the
value of ‘1-13-HTV1’ to be 0), till a certain chosen timestamp (e.g. ‘2019-12-30 16:00:00’) it was
triggered. The differences between the controlled and uncontrolled scenarios are evident: generally,
there is an temperature up lift of ∼ 0.1◦C after valve control was applied, which evidences that the
control is effective. This is justified by the fact that 1-13-HTV1 controls the underfloor heating of
the large Room 1-15 (although the valve sits in the wardrobe). Bringing in 1-14-TMP1 (temperature
in the ensuite bathroom) as a control variable can also be justified: the bathroom has smaller space
and it accommodates some fast heating devices (e.g. electric radiators, heated towel rail, infrared
heating panel and fan) which facilitate control. Fig.7(b) presents the results obtained by raising or
decreasing the temperature in Room 1-14: cooling down the room seems to have greater effect on
1-15-TMP1 than heating it up. Fig.7(c) assumes we are able to swiftly control the temperature in
Reception1 (1-8-TMP1, downstairs of 1-15-TMP1), and we can see the XGBoost model accurately
captured the collaborative relation between these two variables: by increasing 1-8-TMP1 from 22◦C
to 23◦C, a jump of approximately 0.4◦C was induced in 1-15-TMP1. This also shows 1-8-TMP1 has
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greater impact than 1-13-HTV1 and 1-14-TMP1 in influencing 1-15-TMP1, as has been previously
observed from Fig.4. The biggest impact may result from a hybrid control strategy combining all of
the three, by which we expect to achieve faster, even though more aggressive heating control. The
results yielded in Fig.7(d) are in line with our expectations: a jump of 0.6◦C was witnessed.

The temperature changes (0.1∼0.6◦C) in Fig.7, induced by the changes in the values of input control
variables, are small but evident, implying that the XGBoost model is very sensitive in detecting vari-
ations of input controller values, and can act correspondingly to generate differentiated responses.
The change is not huge as the Room 1-15 is spacious, and the influence of 1-14-TMP1 and 1-8-
TMP1 are indirect. These patterns of course are obvious from a human’s perspective; however, it
becomes appreciable when they are identified by a learning algorithm without human intuition.

(a) case 1: control of 1-13-HTV1 (b) case 2: control of 1-14-TMP1

(c) case 3: control of 1-8-TMP1 (d) case 4: hybrid control of 1-13-HTV1, 1-14-
TMP1 and 1-8-TMP1

Figure 7: Indoor temperature predictions by XGBoost, with single or hybrid controls

5.4 Heating Control Implementation

With the capacity of predicting future temperature trajectories, we can calculate the warm-up time
needed to hit a target temperature, when the heating valve is switched on at an arbitrary timestamp.
The inverse problem being, if we want the temperature to be at or above a desired value at certain
timestamp, when should the heating valve be switched on? A brute-force strategy is to first predict
ambient conditions over the entire period from the current time to that timestamp, and work out the
closest starting point that leads to an exact match or close surpass of the target temperature at that
desired timestamp. If the time gap between now and the desired point is small (during which the
ambient conditions may not necessarily change much), another simpler strategy is to work out the
time needed for the indoor temperature to arise to the target temperature if we switch on the valve at
any future preferred time, and do an equal-length shift to the desired timestamp by assuming that the
ambient conditions remain stationary or static over this time period. For simplicity, the later static
approach was demonstrated using the hybrid control experiment (case 4 in Fig.7).

We simulated a scenario to achieve heating control using the predicted indoor temperature trajectory.
Imagine the following heating event was pre-set on a calendar (e.g. pre-saved as .ical or .yml files):

Event: Heating
Target Zone: Room 1-15
Target Timestamp: 2019-12-30 18:00:00
Target Temperature: 22.40◦C
Controls: 1-13-HTV1, 1-14-TMP1, 1-8-TMP1

Suppose the current time is ‘2019-12-30 16:00:00’, so we want the temperature in Zone 1-15 to be
at least, ideally around, 22.40◦C at 18:00 tonight. The task being, when should the heating valve
be switched on to optimize utility use. The task fails if the temperature is below that at the desired
time (the valve responds late); a waste of energy occurs if the target temperature is achieved earlier
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Algorithm 1 Learning-based heating control
Require: historical data, pre-set future event

Step 1: Initialization
Scan future events on calendar and obtain the future event timestamp t (‘2019-12-30 18:00:00’) and target temperature T

(22.40◦C).

Step 2: Ambient conditions forecasting
1. use a sliding window to retrieve historical data (both ambient conditions and indoor temperature).
2. train a univariate model (e.g. time series or LSTM) to forecast future values for the selected features, spanning the time gap

between now and t.

Step 3: Indoor temperature prediction
1. from now on, choose a before-event point t0 (e.g. now) as simulation starting point.
2. set the control variables (single/hybrid control) to their desired values (e.g. set valve status = on).
3. use historical ambient conditions and indoor temperature to train a multivariate, supervised ML model (e.g. XGBoost or neural

network).
4. plug in the forecasted future ambient conditions to predict the indoor temperature trajectory from t0 to t.

Step 4: Warm-up time estimation and heating control
1. Smooth the predicted value (e.g. using moving average), record the first timestamp t1 when the predicted indoor temperature

hits the target temperature T and remains above for a consecutive period.
2. calculate ∆t = t1 − t0 as the warm-up time.

If ∆t ≥ t − now, trigger the heating at current time. If ∆t < t − now, either set the control start time as t − ∆t (static
approximate control, assuming time-invariant characteristics of future ambient conditions), or go back to Step 3 and repeat the
prediction-estimation process (dynamical, iterative search-based control).
3. a buffer time can be further deducted from the control start time to allow extra flexibilities (sufficient warm-up time to further
guarantee the target temperature is achieved).
4. finally, set the control variables to be the desired values at the derived control start time.

(the valve responds too early). The ideal case is for the temperature to arrive around the target
temperature at the specified time. The complete control procedure was described in Algorithm.1.

Algorithm.1 was implemented using the hybrid control strategy blending variables 1-13-HTV1, 1-
14-TMP1 and 1-8-TMP1. We tentatively switch on the heating valve (1-13-HTV1=1), set 1-14-
TMP1= 27◦C and 1-8-TMP1 =23◦C at ‘2019-12-30 16:00:00’, and ask the trained XGBoost model
to predict how they influence the indoor temperature trajectory 1-15-TMP1. It is observed from
Fig.7(d) that, given the prior temperatures 1-14-TMP1=26.5◦C and 1-8-TMP1=22◦C, the target
room temperature 1-15-TMP1 was predicted to be about 21.9◦C initially. After heating controls
were applied, the temperature started to rise and hit the target temperature 22.40◦C at around 16:41
and stay above it for a consecutive period of over 20 mins (this user-defined consecutively over-time
defines a rule to find whether the target temperature has been achieved or not). This gives a warm-up
time of 19 mins, i.e. given the future predicted ambient conditions, if we adopt the hybrid control
strategy, it takes 19 mins to arrive at the target temperature 22.40◦C. As the estimated warm-up
time (19 mins) is less than the two-hour gap between the current time (‘2019-12-30 16:00:00’) and
the desired timestamp (‘2019-12-30 18:00:00’), if ambient conditions stay approximately stationary,
then we can assume the warm-up time is time-invariant, and a static approximate control strategy
advises to switch on the heating valve at time ‘2019-12-30 17:41:00’; if we want to give more
confidence in achieving the target temperature at the desired time, an extra 5 mins buffer time can
be added, and a safe switch-on time would be ‘2019-12-30 17:36:00’. Alternatively, if variations of
future ambient conditions are to be considered, this prediction-estimation process can be repeatedly
exercised, starting at any arbitrary time closer to the desired timestamp to yield a potentially more
accurate estimation of the warm-up time.

Fig.8 recaps the complete graph of implementing the control algorithm. The AR and XGBoost mod-
els were first trained using data from ‘2019-12-01 00:00:00’ to ‘2019-12-30 14:39:00’. As stated
before, even though the AR model does not give perfect accuracy, still in the second stage mod-
elling, the performance of the XGBoost model was very impressive: given real measured ambient
conditions, the indoor temperature predictions (green and magenta dots) agree very well with ground
truths (blue dots) on both the training (in-sample) and test (out-of-sample) datasets. To implement
the hybrid control strategy, we manually masked the real ambient conditions data from ‘2019-12-30
14:40:00’ to ‘2019-12-30 18:00:00’ (the ‘future prediction’ scope), and asked the previously trained
AR model to forecast the ambient conditions over this period, then XGBoost model was employed
to further predict the indoor temperature 1-15-TMP1, with the hybrid control strategy applied. The
results (red dots) provide sound advice on the most appropriate time to switch on the heating valves.
Note that, the future predictions (red dots) are not directly comparable to the ground truth (blue
dots), as the prior ambient conditions are different.
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Figure 8: Learning-based heating control implementation

6 Discussions

The two-stage modelling practice is an example of empirical illustration. Once the two-stage frame-
work is built, it can generalises to other building environments with flexible sensor inputs. In such
cases, a model calibration process, along with feature selection, can be performed based on local data
learning, which ensures models trained in one building can quickly adapt to new environments via
pathways such as transfer learning. While AR is a mature technique in time series modelling, other
potential methods could be explored. Among them, good candidates are those capable of sequen-
tial data processing, these include ARIMA, HMM and LSTM. We have researched these methods
and they provide very good performance over AR; however, they also consume more computing re-
sources and pose more requirements on real-time computing. The performance of the second stage
learning, i.e. the XGBoost, was impressive. This is built on the success of feature forecasting in
the first stage. Both stages have different levels of error tolerance, due to the nature of tree-based
models (weak learners are ensembled sequentially into a strong learner), good performance was
achieved. It would be good practice to compare this two-stage modelling approach with other mod-
elling techniques such as vector AR (VAR) which directly predicts the future using multiple time
series inputs.

The control strategy developed answers the question of when to turn on the control variables; how-
ever, it can be used to decide when to turn off as well, by repeating the same algorithm in the
post-control stage (i.e. after the target temperature has been achieved), intervally turning of some
of the control variables and checking the resulting future temperature trajectories. So it’s a solution
for both tasks. An intelligent BMS can automatically manage different operation variables such as
radiators, lights, water tanks, air conditioners, and even appliance. Theoretically, adding in more
positively correlated (with the response variable) control variables could benefit the control strategy,
and accelerate the heating process. This was demonstrated in the case where the heating valve 1-13-
HTV1, the next door temperature 1-14-TMP1, and downstairs temperature 1-8-TMP1, join together
to form a hybrid control strategy. However, more investigations are needed to study the join effect
of mixed control variables.

The significance of this work lies in following aspects: first, it builds up an automated, AI-powered,
data-driven forecasting system for heating control, this framework contributes to efficient energy
utilisation in line with user request, and improve sustainability in smart buildings. It learns from
environments (ambient conditions) and the learned patterns makes this system ‘well-behaved’ (sav-
ing energy while retaining comfort level) in a real-time environment. It’s more flexible compared
to traditional rule-based control systems, also more efficient than conventional thermal dynamics-
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based mathematical models as it evolves dynamically, reducing the labor of reconstructing structured
models. Secondly, this work combines time series modelling and ML to form a two-stage sequen-
tial modelling approach. It allows some flexibilities for control (via the set of control variables) as
well as dynamical learning from environments (ambient conditions). Time series model captures
the temporal dependence in each feature, while ML model reveals the cross-sectional correlations
between features and response. This mixed temporal-spatial approach enables real time control of
the quantity concerned.

7 Conclusions

This research introduces a sequentially pipelined, mixed data-driven approach to modelling building
data, from which indoor temperature patterns can be learned and optimal heating control decisions
can be made. Sensory data was collected through a wireless sensor network, information were fed
into an intelligent building management system to be analysed and to advise control actions. The
two-stage modelling framework sequentially connects time series and machine learning methods,
and combines learning and input control. A heating control algorithm was designed to maximize
energy utilization, and the effectiveness of the single and hybrid control strategies was demon-
strated. This work contributes towards scalable, automated, and energy-efficient intelligent building
management system design and effective service control to meet human comfort expectation.
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