
Learning Partially Known Stochastic Dynamics with
Empirical PAC Bayes

Manuel Haußmann1∗ Sebastian Gerwinn2∗ Andreas Look2

Barbara Rakitsch2 Melih Kandemir2

1Heidelberg University, Germany
manuel.haussmann@iwr.uni-heidelberg.de

2Bosch Center for Artificial Intelligence, Renningen, Germany
firstname.lastname@de.bosch.com

Abstract

Neural Stochastic Differential Equations (NSDEs) model dynamical environments
with neural nets assigned to their drift and diffusion terms. The high expressive
power of their nonlinearity comes at the expense of instability in the identification
of the large set of free parameters. This paper presents a recipe to improve the
prediction accuracy of such models in three steps: i) accounting for epistemic un-
certainty by assuming probabilistic weights, ii) incorporation of partial knowledge
on the state dynamics, and iii) training the resultant hybrid model by an objective
derived from a PAC Bayesian generalization bound. We observe in our experiments
that this recipe effectively translates partial and noisy prior knowledge into an
improved model fit.1

1 Introduction

In many engineering applications, it is often easy to model dominant characteristics of a dynamical
environment by a system of differential equations with a small set of state variables. In contrast,
black-box machine learning methods are often highly accurate but less interpretable. Pushing the
model towards high fidelity by capturing intricate properties of the environment, however, often
requires highly flexible, e.g. over-parameterized models. Fitting these models to data can, in turn,
result in over-fitting and hence poor generalization ability due to their high capacity.

Our work combines the benefits of both types of models by hybrid modeling: We set up the learning
task as a non-linear system identification problem with partially known system characteristics. In the
following, we assume to have access to a differential equation system that describes the dynamics of
the target environment with low fidelity, e.g. by describing the vector field on a reduced dimensionality,
by ignoring detailed models of some system components, or by avoiding certain dependencies for
computational feasibility. We incorporate the system provided by the domain expert into a non-linear
system identification engine, which we choose to be a Bayesian Neural Stochastic Differential
Equation (BNSDE) to cover a large scope of dynamical systems, resulting in a hybrid model.

We propose a new algorithm for stable and effective training of such a hybrid BNSDE that combines
the strengths of two statistical approaches: i) Bayesian model selection (Williams and Rasmussen,

∗Equal contribution
1See https://arxiv.org/abs/2006.09914 for the most current version.

Workshop on machine learning for engineering modeling, simulation and design @ NeurIPS 2020

https://arxiv.org/abs/2006.09914

2006), and ii) Probably Approximately Correct (PAC) Bayesian training (McAllester, 1999; Seeger,
2002). We improve the theoretical links between these two approaches (Germain et al., 2016b) by
demonstrating how they can co-operate during training. To this end, we propose a novel training
objective that suits to SDE inference, and derive a PAC-Bayesian generalization bound. Further,
we provide a proof that this bound is upper bounded by the marginal likelihood of the BSDE
hyperparameters and a complexity penalizer. Gradients of this upper bound are tied to the actual PAC
bound, hence tightening the upper bound also tightens the PAC bound. Consequently, optimizing this
bound amounts to Empirical Bayes stabilized by a regularizer developed from first principles. We
refer to using this objective for training as Empirical PAC Bayes.

We demonstrate that our method can translate coarse descriptions of the true underlying dynamics
into a consistent increase of forecasting accuracy. We first show in an ablation study the necessity of
each of the multiple steps that comprise our method. Finally, we demonstrate in a real-world motion
capture modeling task, that our method outperforms black-box system identification approaches
(Chen et al., 2018; Hegde et al., 2019; Look and Kandemir, 2019) and alternative hybridization
schemes that incorporate second-order Newtonian mechanics (Yildiz et al., 2019).

2 Background

Our contribution combines approaches from stochastic differential equations, PAC learning, and
Empirical Bayes. Hence, we first introduce each of these concepts.

Stochastic Differential Equations. Stochastic differential equations (SDEs) are an extension of
ordinary differential equations (ODEs) to include stochastic fluctuations in the dynamics (Oksendal,
1992). If we let ht ∈ RP denote the P -dimensional state, the dynamics can be written in the
following form:

dht = f(ht, t)dt+G(ht, t)dWt, (1)

where the drift term is given by an arbitrary non-linear function f(·, ·) : RP ×R+ → RP and the
matrix valued function G(·, ·) : RP ×R+ → RP×P governs the diffusion dynamics. Finally, Wt

denotes a P -dimensional Wiener Process determining the stochastic fluctuations. The solution to the
SDE is a stochastic process ht. By setting the diffusion term G to zero, the SDE reverts to an ODE.

As analytical solutions of SDEs, i.e. descriptions of ht are not available except for specific choices of
f and G, one has to resort to numerical approximation methods. Analogous to the practice for ODEs,
a common approach is to use the Euler-Maruyama (EM) method (Särkkä and Solin, 2019), which
discretizes the SDE in time steps t1, . . . , tK , resulting in the following sample based approximation
to the joint distribution:

htk+1
= htk + f(htk , tk)∆tk +G(htk , tk)∆Wk,

∆Wk ∼ N (0,∆tk1P), ∆tk := tk+1 − tk,
(2)

where 1P is a P dimensional identity matrix. Using this sampling scheme, we obtain an approxima-
tion to the joint distribution p(ht1 , . . .htK) for the given (fixed) drift and diffusion functions. In the
following, we rely on this approximation scheme.

PAC Learning. Probably Approximately Correct (PAC) bounds quantify the generalization ca-
pabilities of a model from a training set to the true data distribution (McAllester, 1999; 2003). To
this end, a risk R(h) = Ex [l(x, h(x))] of a hypothesis h is defined via a loss function l(x, h(x))
that measures the loss of the hypothesis evaluated at a data point x. Particularly, we build upon the
Bayesian PAC formulation, in which the generalization performance of a Bayesian posterior, i.e. a
distribution Q over hypotheses, is characterized by the following bound:

∀Q : Eh∼Q [R(h)] ≤ Eh∼Q [RD(h)] + C(P,Q, δ,N).

In the inequality above, EQ [R(h)] is the expected risk across all hypotheses under the true data

distribution, which is not accessible in practice, and EQ [RD(h)] = EQ

[
1
|D|
∑
x∈D l

(
x, h(x)

)]
is

its empirical counterpart in which the risk is averaged across the observed data D. A distribution P
over the hypotheses, referred to as the prior, determines the complexity term C(P,Q, δ,N). This term
additionally depends on the number of observed data points N and a confidence variable δ specifying
the probability with which the bound holds (McAllester, 1999; Maurer, 2004).

2

Empirical Bayes. Bayesian models define a prior distribution pφ(θ) over parameters θ with hyper-
parameter φ, which together with the likelihood p(D|θ) defines the full model. The standard approach
consists of learning a posterior over these parameters p(θ|D) while keeping the hyperparameters φ
fixed and marginalizing over θ in a second step to get the posterior predictive. An alternative, known
as Empirical Bayes or Type-II maximum likelihood (see e.g. Bishop, 2006), directly marginalizes
over the prior, and optimizes the resulting marginal likelihood/prior predictive with respect to the
hyperparameters φ, i.e.

arg max
φ

∫
p(D|θ)pφ(θ)dθ. (3)

3 The Proposed Method

In this section, we describe how to combine the introduced tools into a coherent method for effective
BNSDE inference. We first construct a BNSDE and equip it with domain-specific prior knowledge.
We then derive a PAC-Bayesian objective to fit it to data, and conclude with results on the convergence
of the proposed approach.

3.1 A Hybrid BNSDE

Application of deep learning to differential equation modeling paves the way to high-capacity
predictors for capturing complex dynamics (Chen et al., 2018; Rackauckas et al., 2020). Neural
Stochastic Differential Equations (NSDEs) (Look and Kandemir, 2019; Tzen and Raginsky, 2019)
are SDEs as defined in (1) where the drift function, and potentially also the diffusion function are
modeled as neural nets. As an initial step towards effective training, we introduce a prior distribution
pφ(θf), parameterized by φ on the weights θf of a NSDE drift network, and arrive at

dht = fθf (ht, t)dt+G(ht, t)dWt, θf ∼ pφ(θf), (4)

which we refer to as a Bayesian Neural Stochastic Differential Equation (BSNDE). The epistemic
uncertainty introduced on the network weights allows the model to quantify the model uncertainty,
i.e. the knowledge of which synaptic map fits best to data, in addition to the aleatoric uncertainty that
is modeled by the Wiener Process. For technical reasons to be clarified below, we assume fθf (·, ·)
and G(·, ·) to be L-Lipschitz-continuous, and G(·, ·) not to have any learnable parameters.

In real-world applications, a coarse description of the environment dynamics is sometimes available
as an incomplete set of differential equations. For instance, the dynamics of a three-dimensional
volume might be modeled as a flow through a single point, such as the center of mass. Alternatively,
a model on a subset of the system components might be provided. We assume this prior knowledge
to be available as an ODE

dht = rξ(ht, t)dt, (5)

where rξ(·, ·) : RP ×R+ → RP is an arbitrary non-linear function parameterized by a fixed set of
parameters ξ. We can incorporate these known dynamics into the BNSDE by adding them to the drift

dht =
(
fθf
(
ht, t) + γ ◦ rξ(ht, t)

)
dt+G(ht, t)dWt, (6)

which can be viewed as a hybrid SDE with the free parameter vector γ ∈ [0, 1]P governing the
relative importance of prior knowledge on the learning problem and ◦ referring to element-wise
multiplication. Although we specified (5) within the same dimensional state space as (6), γ allows us
to provide only partial information. When prior knowledge is available only for a subset of the state
space dimensions, the remaining dimensions d can be filled in by simply setting γd = 0.

We define a prior stochastic process representing solely the prior knowledge of the dynamics as

dht =
(
γ ◦ rξ(ht, t)

)
dt+G(ht, t)dWt. (7)

This prior SDE will be used as a reference distribution for complexity penalization as part of the final
PAC training objective of our hybrid SDE. Note that we have used the same diffusion term as in (6)
for specifying the prior SDE, which makes the complexity term within the PAC-formulation tractable,
as we will show later. Also note that γ is a free parameter of the prior.

3

3.2 Learning via Empirical Bayes

Solving the SDE in (6) even for fixed parameters θf over an interval [0, T] is analytically intractable
for basically all practically interesting use cases. While our method is applicable to any discretization
scheme, we demonstrate its use with the straightforward EM for simplicity, which gives us the
discrete-time version of the hybrid BSDE below

θf ∼ pφ(θf), h0 ∼ p(h0),

hk+1|hk, θf ∼ N
(
hk+1

∣∣hk + d(hk, tk)∆tk,Σk
)
,

d(hk, tk) = fθf (hk, tk) + γ ◦ rξ(hk, tk)

with Σk := Jk∆tk,Jk := G(hk, tk)G(hk, tk)>, and ∆tk := tk+1 − tk. The distribution p(h0) is
defined on the initial state.

Analogously to latent state space models, we assume that the observations of the dynamics described
in (4), (6), and (7) are linked via a likelihood p(yk|hk). Specifically, we observe these dynamics as
time series Y = {y1, . . . ,yK} consisting of K observations yk ∈ RD, collected at irregular time
points t = {t1, . . . , tK}.
Given an observed set of N such time series trajectories D = {Y1, . . . ,YN}, the classical approach
(MacKay, 2003; Gelman et al., 2013) would now require as a first step the inference of the pos-
terior over both the global variables θf as well as the local variables Hn = {hn1 , ...,h

n
K}, i.e. of

p(θf ,H1, . . . ,HN |D), and as a second step a marginalization over this posterior to get the posterior
predictive. As an analytical solution is intractable, approximate solutions such as Markov Chain
Monte Carlo (MCMC) methods or Variational Inference (VI) are required. Application of either
of these approaches to BNSDEs is prohibitive, the former computationally, the latter in terms of
expressiveness since existing work makes strong independence and structural assumptions on the
approximate posterior.

We propose in the following to apply model selection as an alternative path to BNSDE inference.
Instead of performing the posterior inference on the latent variables, we marginalize them out and
learn those hyperparameters φ from data that provide the highest log marginal likelihood (Williams
and Rasmussen, 2006). That is our BNSDE learns the optimal φ∗ via

arg max
φ

∫
p(D|H)p(H|θf)pφ(θf)d(H, θf). (8)

An advantage of this construction is that the marginal likelihood has the identical functional form
to the predictive distribution, which is the quantity of interest in a typical prediction task. Marginal
likelihood learning has also been applied before in the context of Neural Networks (Sensoy et al.,
2018; Malinin and Gales, 2018; Garnelo et al., 2018). Fitting the hyperparameters of an SDE to data
via marginal likelihood maximization can also be viewed as an instance of the simulated likelihood
method (Särkkä and Solin, 2019).

Marginalizing over θf in (8) is intractable for most practical use cases. However, it can be approxi-
mated by Monte Carlo integration without constructing chains on the global parameters. Sampling
directly from the prior, we get for a single observation n and s = 1, . . . S

θsf ∼ pφ(θf), Hs ∼ p(H|θsf),

φ∗ := arg max
φ

log
(1

S

S∑
s=1

p(D|Hs)
)
.

(9)

In order to maximize this objective, we require an efficient computation of gradients w.r.t. the
hyperparameter φ. Access to φ is only given via samples from the distribution it is parameterizing.
In our experiments, we assume this distribution pφ(θf) to be normal, allowing us to make use of
the standard reparameterization. We separate the sampling process into a parameter-free source
of randomness and a parametric transformation, i.e. we have ε ∼ p(ε), θf = gφ(ε), for a suitable
function gφ(·). In order to further reduce the variance noise introduced to the gradients due to this
sampling step, we also use the local reparameterization trick (Kingma et al., 2015) in the drift, i.e.
we sample the layer outputs during the forward propagation instead of individual layer weights.

The objective (9) is agnostic to the specific SDE employed. Therefore, we refer to the discretized
black-box SDE in (4) governing p(H|θf) and trained w.r.t. φ via this objective as E-Bayes throughout.
Analogously, we refer to training a hybrid SDE as in (6) with the same method as E-Bayes-Hybrid.

4

3.3 A Trainable PAC Bound

A major downside of the objective in (9) when applied to BNSDEs is that it optimizes a large set of
hyperparameters, i.e. means and variances of drift network weights, without a proper regularization
aside from the implicit regularization inherent in the chosen architecture and the marginalization
itself. While the hybrid approach already allows us to incorporate prior expert knowledge, it remains
only a guiding signal without an explicit model capacity regularizer. We address this problem next
by developing a training objective derived from a PAC-Bayesian bound objective that combines the
benefits from the results we arrived at so far with a proper regularization scheme.

The proposed approach is still agnostic to the chosen discretization scheme. Consequently, we
refer for any time horizon T > 0 to all local latent variables by h0→T . To distinguish the density
given by the hybrid SDE in (6) from the prior SDE in (7), we denote the densities induced by them
respectively as phyb(h0→T |θf) and ppri(h0→T). Consequently, we define two distributions Q and P
over (h0→T , θf). For the former, we have the joint distribution of the hybrid process developed in (6)

Q0→T (h0→T , θf) = phyb(h0→T |θf)pφ(θf), (10)
while the latter stands for the joint distribution of the prior process developed in (7)

P0→T (h0→T , θf) = ppri(h0→T)ppri(θf). (11)
Although the prior process is independent of the drift parameters θf , we specify a fixed prior
distribution ppri(θf) within the prior P , which we choose to be a standard normal density within our
experiments. In order to be compliant with the notational practice in the PAC Bayesian literature,
we denote the prior distribution as P and the posterior distribution that is fit to data as Q. In the
PAC-Bayesian framework, P and Q do not have to be linked to each other via application of the
Bayes rule on an explicitly defined likelihood.

As both Q and P share the same diffusion term, the Kullback-Leibler (KL) divergence between these
processes can be calculated by extending the proof of Archambeau et al. (2008). The following
Lemma holds for any choice of diffusion term G(·, ·). The proofs for the Lemma and the following
Theorems can be found in the appendix.

Lemma 1. For the process distributions Q0→T and P0→T , it holds that
DKL

(
Q0→T ||P0→T

)
=

1

2

∫ T

0

EQ0→T

[
fθf (ht, t)

>J−1t fθf (ht, t)
]
dt

+DKL

(
pφ(θf)||ppri(θf)

)
,

for some T > 0, where Jt = G(ht, t)G(ht, t)
>.

This lemma provides one of the main ingredients for deriving a PAC-Bayesian bound on the gen-
eralization performance of a learned distribution Q0→T . To derive such a bound, we additionally
specify the risk via a loss function measuring the model mismatch. We assume the likelihood function
p(yt|ht) to be uniformly bounded everywhere.2 We then define the true risk of a draw from Q0→T
on an i.i.d. sampled trajectory Y = {y1, . . . ,yK} at discrete and potentially irregular time points
t1, . . . , tK drawn from an unknown ground-truth stochastic process G(t) as the expected model misfit
on the sample. Specifically, we define the risk over hypotheses H = (h0→T , θf) as follows:

R(H) = −EY∼G(t)

[K∏
k=1

p(yk|hk)
]
, (12)

for time horizon T > 0 and the corresponding empirical risk on a data set D = {Y1, . . . ,YN} as

RD(H) = − 1

N

N∑
n=1

[K∏
k=1

p(ynk |hnk)
]
. (13)

Next, we develop a PAC-Bayesian generalization bound building on these risk definitions. Further-
more, we upper bound it with a trainable objective.

2In our experiments, we ensure this condition by choosing the likelihood to be a normal density with bounded
variance, i.e. bounded mass on the mode.

5

Theorem 1. The expected true risk is bounded above with probability P ≥ 1− δ by:

EH∼Q0→T
[R(H)] ≤ EH∼Q0→T

[RD(H)] + Cδ(Q0→T , P0→T) (14)

≤ − 1

N

N∑
n=1

log

(
1

S

S∑
s=1

K∏
k=1

p(ynk |h
n,s
k)

)

+ Cδ/2(Q0→T , P0→T) +

√
log(2N/δ)

2S
+K logB︸ ︷︷ ︸

=:C

, (15)

≤ − 1

SN

N∑
n=1

S∑
s=1

K∑
k=1

log
(
p(ynk |h

n,s
k)
)

+ C (16)

where B := maxyk,hk
p(yk|hk) is the uniform bound, S is the sample count taken independently for

each observed sequence, and the complexity functional is given for some δ > 0 as

Cδ(H0→T , P0→T) =

√
DKL

(
Q0→T ||P0→T

)
+ log(2

√
N)− log(δ/2)

2N

with DKL

(
Q0→T ||P0→T

)
as in Lemma 1.

Theorem 1 can be used to learn a posterior distribution Q0→T from data by adjusting φ. Additionally,
we can also learn the importance of the prior by fitting the γ parameter to data. While directly learning
γ by optimizing the PAC-bound violates the generalization guarantee, we can define a collection of
prior distributions P0→T for a set Γ of discretized values of γ and employ the same union bound
as Reeb et al. (2018). The resulting PAC-bound differs by a constant accounting for the number of
distinct γ values within the collection. Therefore, we can use the same gradient based optimization to
learn γ and quantize the value to the closest point within Γ to evaluate the PAC bound.

3.4 The Training Algorithm

The first term in (14) does not correspond to the Empirical Bayes objective as it averages over
likelihoods, and not log-likelihoods (Germain et al., 2016a). However, the first term in (15) provides
a sampling based approximation to the empirical Bayes objective. By defining the risk in such a way
and employing the PAC-Bayesian framework, we obtain a regularized version of empirical Bayes.
Although placing the log(·) function into its summands loosens the bound on the true risk, it improves
numerical robustness and optimizing (16) still tightens the original PAC-Bayesian bound, i.e. (14), as
stated in the following corollary.

Corollary 1. For Lipschitz-continuous risk and likelihood, a gradient step that reduces (16) also
tightens the PAC bound in (14).

Minimizing (16) hence closes the loop as the Empirical Bayes objective derived in (9) reappears in
(15) but is now combined in a principled way with the regularization term Cδ. We can ignore the
terms that do not depend on φ and adopt the remaining expression bound as our final objective and
learn φ∗ via

φ∗ := arg max
φ

1

SN

N∑
n=1

S∑
s=1

K∑
k=1

log
(
p(ynk |h

n,s
k)
)

+

√
DKL

(
H0→T ||P0→T

)
+ log(4

√
N/δ)/2N.

In this training procedure, we only train w.r.t. φ which determine the drift term. To also learn the
diffusion, one could represent G also by a BNN. However, the corresponding training procedure
would invalidate the PAC statement. Nevertheless, the diffusion term could be learnt on a held-out
data set and then incorporated as fixed to the bound (16). As Theorem 1 applies to any diffusion
term, we keep the genericness of its statement. However, in the experiments, we stick to a constant
diffusion term for practical reasons.

Although we require i.i.d. observations of time series in the theory, we can in practice use mini-batches
of trajectories provided that the batches are sufficiently far apart so that they become essentially
independent. The objective (15) differs from the Empirical Bayes one in (9) only by the complexity

6

term. The only complicated calculation step in this term is the integral through the process, which
can be made more implementation friendly using Fubini’s theorem:∫ T

0

EQ0→T

[
fθf (ht, t)

>J−1t fθf (ht, t)
]
dt = EQ0→T

[∫ T

0

fθf (ht, t)
>J−1t fθf (ht, t)dt

]
.

An algorithmic description of the resultant procedure is given in Algorithm 1. Our sampling-based
method naturally couples with the EM approximation and inherits its convergence properties. Below
we show strong convergence to the true solution with shrinking step size by extending the plain EM
proof (Kloeden and Platen, 2011).

Theorem 2 (strong convergence). Let hθt be an Itô process as in (4) with drift and diffusion
parameters θ and h̃θt its Euler-Maruyama approximation for some regular step size ∆t > 0. For
some coefficient R > 0 and any T > 0, the below inequality holds

E

[
sup

0≤t≤T

∣∣∣Eθ[hθt]− 1

S

S∑
s=1

h̃θ
(s)

t

∣∣∣] ≤ R∆t1/2,

as S →∞ where {θ(s) ∼ pφ(θ)|s = 1, · · · , S} are i.i.d. draws from a prior pφ(θ).

4 Experiments
Table 1: Ablation study on the Lorenz attractor to
evaluate the contributions of the prior knowledge
on the predictive performance measured in Mean
Squared Error (MSE) with standard deviation over
ten repetitions. The hybrid models ((iii), (iv)) con-
sistently improve on the black box models ((i),(ii)).
The last row (v) shows the performance for the
case the model has full access to the true dynamics
with noisy parameters in (5).

Prior Knowledge Model Test MSE

None (i) 29.67± 1.09
(ii) 30.51± 1.53

γ = [1, 0, 0], ζ ∼ N (10, 1)
(iii) 28.17± 1.05
(iv) 26.98± 1.18

γ = [0, 1, 0], κ ∼ N (2.67, 1)
(iii) 15.93± 3.42
(iv) 15.73± 3.22

γ = [0, 0, 1], ρ ∼ N (28, 1)
(iii) 28.72± 2.35
(iv) 27.59± 1.15

γ = [1, 1, 1], (v) 16.42± 17.06
(ζ, κ, ρ)> ∼ N

(
(10, 2.67, 28)>,13

)

We evaluate four variants of our method:

(i) E-Bayes. Empirical Bayes without
prior knowledge, i.e. training (9) with
p(h0→T) given by (4).

(ii) E-PAC-Bayes. Empirical PAC Bayes
on the BNDSE using the objective
in (16) with an uninformative prior
drift, i.e. rξ(ht, t) = 0.

(iii) E-Bayes-Hybrid. Same training objec-
tive as (i), however with the hybrid
model as proposed in (6).

(iv) E-PAC-Bayes-Hybrid. The hybrid
model (6) with the same loss as E-PAC-
Bayes, which is the combination we
propose.

We extend the Empirical Bayes objective in (9)
by PAC-Bayes to tune many hyperparameters
without overfitting and incorporate prior domain knowledge in a principled way. We evaluate the
first motivation as E-PAC-Bayes, i.e. objective (16) but without a prior SDE, and the complete
model including a prior SDE as E-PAC-Bayes-Hybrid. See appendix for detailed discussion of the
computational cost of each of these methods as well as further experiments.

Lorenz Attractor. This chaotic non-linear system has the the following inherently unsolvable
dynamics

dxt = ζ(yt − xt)dt+ dWt,

dyt =
(
xt(κ− zt)− yt

)
dt+ dWt,

dzt = (xtyt − ρzt)dt+ dWt,

where ζ = 10, κ = 28, ρ = 2.67, and Wt is a random variable following a Wiener process with
unit diffusion. We generate 1920 observations from the above dynamics initiating the system at
x0, y0, z0 = (1, 1, 28), use the first half for training and the rest for testing. We split both the training
and the test data into 20 sequences of length 24, which can be interpreted as i.i.d. samples of the
system with different initial states. Table 1 presents the 24-step ahead forecasting error in MSE on

7

Table 2: Benchmarking of our method on the CMU Motion Capture Data Set. Mean Squared Error
(MSE) and Negative Log-Likelihood (NLL) on 300 future frames is averaged over ten repetitions (±
standard deviation).

Method Reference Bayesian Hybrid +KL Test MSE Test NLL
DTSBN-S (Gan et al., 2015) No No No 34.86± 0.02 Not Applicable
npODE (Heinonen et al., 2018) No No No 22.96 Not Applicable
Neural-ODE (Chen et al., 2018) No No No 22.49± 0.88 Not Applicable
ODE2VAE (Yildiz et al., 2019) Yes Yes No 10.06± 1.40 Not Reported
ODE2VAE-KL (Yildiz et al., 2019) Yes Yes Yes 8.09± 1.95 Not Reported
D-BNN (SGLD) (Look and Kandemir, 2019) Yes No No 13.89± 2.56 747.92± 58.49
D-BNN (VI) (Hegde et al., 2019) Yes No Yes 9.05± 2.05 452.47± 102.59

E-Bayes Baseline Yes No No 8.68± 1.56 433.76± 77.78

E-PAC-Bayes Ablation Yes No Yes 9.17± 1.20 489.82± 67.06
E-Bayes-Hybrid Ablation Yes Yes No 9.25± 1.99 462.82± 99.61
E-PAC-Bayes-Hybrid Proposed Yes Yes Yes 7.84± 1.41 415.38± 80.37

the test set for our model variants. In each experiment repetition, E-Bayes-Hybrid and E-PAC-Bayes-
Hybrid are provided one equation after distorting the corresponding parameter by normal distributed
noise. The other equations are held out by being hard assigned to zero. To set up the corresponding
prior and model, we used a constant diffusion with G = 1. Despite the imprecision of the provided
prior knowledge, the largest performance leap comes from the hybrid models. The complexity term
on the PAC-Bayesian bound restricts the model capacity for black-box system identification, while it
improves the hybrid setup.

Figure 1 visualizes the predicted trajectories on the test sequence for prior knowledge on dzt. Even
with weak prior knowledge, the proposed model is stable longer than the baseline as well as showing
a proper increase in the variance as the predicted trajectory increases, while the baseline diverges
sooner without a proper increase in uncertainty.

0 20 40 60 80 100 120 140 160 180 200
steps

2

4

6

8

10

12

14

x

Truth
E-Bayes
E-PAC-Bayes-Hybrid

Figure 1: Predicted trajectory for 200 time steps
starting at T = 10 of the Lorenz data set mapped
to one dimension. The error bars indicate ±2 stan-
dard deviations over 21 trajectories.

CMU Walking Data Set. We benchmark
against the state of the art on this motion cap-
ture data set following the setup of Yildiz et al.
(2019). We train an E-PAC-Bayes model on
the MOCAP-1 data set that consists of 43 mo-
tion capture sequences measured from 43 dif-
ferent subjects. The drift net of the learned
BNSDE is then treated as weak and broad prior
knowledge on human walking dynamics. We
use MOCAP-2 with 23 walking sequences from
Subject 35 to represent a high-fidelity subject-
specific modeling task. As reported in the Table
2 of Yildiz et al. (2019), the state of the art of
subject-independent mocap dynamic modeling
has twice as high prediction error as subject-
specific dynamics (MSE of 15.99 versus 8.09). Analogously to the Lorenz attractor experiment,
we fixed the prior diffusion term for the PAC-variants to be constant. We report the test MSE and
negative log-likelihoods in Table 2. Our method delivers best prediction accuracy and model fit when
all its components are active.

5 Conclusion

We have shown that our method incorporates vague prior knowledge into a flexible Bayesian black-box
modelling approach for learning SDEs resulting in a robust learning scheme guided by generalization
performance via a PAC-Bayesian bound. The method is easily adaptable to other solvers. For
example, the training loss derived in (9) can also be optimized using a closed-form normal assumed
density scheme applied over a stochastic Runge-Kutta variant (Li et al., 2019). Independent from the
sampling scheme and model used, our tied gradient update procedure allows training on the loose,
yet numerically stable, bound while providing an improvement w.r.t. the generalization guarantees

8

on its tighter counterpart. Our stochastic approximation of the data log-likelihood currently relies
on samples obtained from the prior, yet could be improved by incorporating a more sophisticated
sampling scheme, e.g. using particle filtering (Kantas et al., 2015). Finally, the bound in (16) has the
potential to be vacuous for certain drift nets, incorporating a Hoeffding assumption (Alquier et al.,
2016) could further tighten it.

References
P. Alquier, J. Ridgway, and N. Chopin. On the properties of variational approximations of gibbs

posteriors. The Journal of Machine Learning Research, 17(1):8374–8414, 2016.

C. Archambeau, M. Opper, Y. Shen, D. Cornford, and J.S. Shawe-Taylor. Variational Inference for
Diffusion Processes. In NIPS. 2008.

C. M. Bishop. Pattern recognition and machine learning. springer, 2006.

S. L Brunton, J.L. Proctor, and J.N. Kutz. Discovering governing equations from data by sparse
identification of nonlinear dynamical systems. Proceedings of the national academy of sciences,
113(15):3932–3937, 2016.

O. Catoni. PAC-Bayesian Supervised Classification: The Thermodynamics of Statistical Learning.
IMS Lecture Notes Monograph Series, 56, 2007.

R. Chen, Y. Rubanova, J. Bettencourt, and D. Duvenaud. Neural Ordinary Differential Equations. In
NeurIPS, 2018.

A. Doerr, C. Daniel, M. Schiegg, D. Nguyen-Tuong, S. Schaal, M. Toussaint, and S. Trimpe.
Probabilistic Recurrent State-Space Models. In ICML, 2018.

D. Durstewitz. A state space approach for piecewise-linear recurrent neural networks for reconstruct-
ing nonlinear dynamics from neural measurements. arXiv preprint arXiv:1612.07846, 2016.

G. Dziugaite and D.M. Roy. Computing Nonvacuous Generalization Bounds for Deep (Stochastic)
Neural Networks with Many More Parameters than Training Data. In UAI, 2017.

Z. Gan, C. Li, R. Henao, D.E. Carlson, and L. Carin. Deep Temporal Sigmoid Belief Networks for
Sequence Modeling. In NIPS, 2015.

M. Garnelo, D. Rosenbaum, C. Maddison, T. Ramalho, D. Saxton, M. Shanahan, Y.W. Teh,
D. Rezende, and S. M.A. Eslami. Conditional Neural Processes. ICML, 2018.

Andrew Gelman, John B Carlin, Hal S Stern, David B Dunson, Aki Vehtari, and Donald B Rubin.
Bayesian data analysis. CRC press, 2013.

P. Germain, F. Bach, A. Lacoste, and S. Lacoste-Julien. PAC-Bayesian Theory Meets Bayesian
Inference. In NIPS. 2016a.

P. Germain, F. Bach, A. Lacoste, and S. Lacoste-Julien. PAC-Bayesian Theory Meets Bayesian
Inference. In NIPS, 2016b.

P. Hegde, M. Heinonen, H. Lähdesmäki, and S. Kaski. Deep Learning with Differential Gaussian
Process Flows. In AISTATS, 2019.

M. Heinonen, C. Yildiz, H. Mannerström, J. Intosalmi, and H. Lähdesmäki. Learning Unknown ODE
Models with Gaussian Processes. In ICML, 2018.

N. Kantas, A. Doucet, S.S. Singh, J. Maciejowski, N. Chopin, et al. On particle methods for parameter
estimation in state-space models. Statistical science, 30(3):328–351, 2015.

D.P. Kingma, T. Salimans, and M. Welling. Variational Dropout and The Local Reparameterization
Trick. In NIPS, 2015.

P.E. Kloeden and E. Platen. Numerical Solution of Stochastic Differential Equations. Springer-Verlag,
2011.

9

J. Knoblauch, J. Jewson, and T. Damoulas. Generalized variational inference. arXiv preprint
arXiv:1904.02063, 2019.

X. Li, Y. Wu, L. Mackey, and M.A. Erdogdu. Stochastic Runge-Kutta accelerates Langevin Monte
Carlo and beyond. In NeurIPS. 2019.

A. Look and M. Kandemir. Differential Bayesian Neural Nets. In 4th NeurIPS Workshop on Bayesian
Deep Learning, 2019.

D. JC MacKay. Information theory, inference and learning algorithms. Cambridge university press,
2003.

A. Malinin and M. Gales. Predictive uncertainty estimation via prior networks. In NeurIPS, 2018.

A. Maurer. A note on the PAC Bayesian theorem. arXiv preprint cs/0411099, 2004.

D. McAllester. PAC-Bayesian Model Averaging. In COLT, 1999.

D. McAllester. PAC-Bayesian Stochastic Model Selection. Machine Learning, 51:5–21, 2003.

B. Oksendal. Stochastic Differential Equations: An Introduction with Applications. Springer-Verlag,
1992.

C. Rackauckas, Y. Ma, J. Martensen, C. Warner, K. Zubov, R. Supekar, D. Skinner, and A. Ramadhan.
Universal differential equations for scientific machine learning. arXiv preprint arXiv:2001.04385,
2020.

D. Reeb, A. Doerr, S. Gerwinn, and B. Rakitsch. Learning Gaussian Processes by Minimizing
PAC-Bayesian Generalization Bounds. In NeurIPS. 2018.

S. Särkkä and A. Solin. Applied stochastic differential equations, volume 10. Cambridge University
Press, 2019.

M. Seeger. PAC-Bayesian Generalisation Error Bounds for Gaussian Process Classification. Journal
of Machine Learning Research, 3:233–269, 2002.

M. Sensoy, L. Kaplan, and M. Kandemir. Evidential Deep Learning to Quantify Classification
Uncertainty. In NeurIPS, 2018.

B. Tzen and M. Raginsky. Neural Stochastic Differential Equations: Deep Latent Gaussian Models
in the Diffusion Limit. ArXiv, abs/1905.09883, 2019.

C. KI Williams and C. E. Rasmussen. Gaussian processes for machine learning, volume 2. MIT
press Cambridge, MA, 2006.

C. Yildiz, M. Heinonen, and H. Lahdesmaki. ODE2VAE: Deep Generative Second Order ODEs with
Bayesian Neural Networks. In NeurIPS. 2019.

10

APPENDIX
A Related Work

Empirical Bayes as PAC Learning. Germain et al. (2016b) propose a learnable PAC-Bayesian
bound that provides generalization guarantees as a function of a marginal log-likelihood. Our
method differs from this work in two main lines. First, Germain et al. (2016b) define risk as
− log p(Y|H) ∈ (−∞,+∞) and compensate for the unboundedness by either truncating the support
of the likelihood function or introducing assumptions on the data distribution, such as sub-Gaussian
or sub-Gamma. Contrarily, our risk defined in (12) assumes uniform boundedness, yet can be
incorporated into a PAC-Bayesian bound without further restrictions on the data. Second, Germain
et al. (2016b)’s bound is an unparameterized rescaling of the marginal log-likelihood. Hence, it is not
linked to a capacity penalizer, which can be used at training time for regularization. Applying this
method to hybrid sequence modeling boils down to performing plain Empirical Bayes, i.e. E-Bayes
in our experiments.

Differential GPs. Hegde et al. (2019) model the dynamics of the activation maps of a feed-forward
learner by the predictive distribution of a GP. This method allocates the mean of a GP as the drift
and covariance as the diffusion. It infers the resultant model using variational inference. While
direct application of this method to time series modeling is not straightforward, we represent it
in our experiments by sticking to our generic non-linear BNSDE design in (4), and inferring it
by maximizing the ELBO: L(φ) = EH,θ

[
log p(Y|H)

]
−DKL

(
pφ(θ)||p(θ)

)
, applying the local

reparameterization trick on θ. Although variational inference can be seen from a PAC-perspective
by choosing the log-likelihood as the loss (Knoblauch et al., 2019), the ELBO does not account for
the deviation of variational posterior over latent dynamics from the prior latent dynamics. We refer
to this baseline in the experiments as D-BNN (VI). The approximate posterior design here closely
follows the PR-SSM approach (Doerr et al., 2018), which represents the state of the art in state-space
modeling.

Differential BNNs with SGLD. The learning algorithm of Look and Kandemir (2019) shares our
BNSDE modeling assumptions, however, it uses Stochastic Gradient Langevin Dynamics (SGLD) to
infer θ. The algorithm is equivalent to performing MAP estimation of the model parameters in (4)
while distorting the gradient updates with decaying normal noise that also determines the learning
rate.

Black-box identification of dynamic systems. There are various approaches to identify a dynami-
cal system that differ in the model class used for fitting the right-hand side of the differential equation
and may also allow for transitional noise (e.g. Brunton et al., 2016; Durstewitz, 2016). These ap-
proaches could be incorporated into ours, using their transition likelihood and prior over parameters.
In fact, our black-box neural SDE can be seen as one instance of such a black-box identification
of dynamical systems (E-Bayes, see below). As we are mainly interested in incorporating prior
knowledge into such black-box models, we chose one such competitor (Hegde et al., 2019), which
allows for the most flexible right-hand side with reported results on the CMU Motion capture data set
(Tab. 2).

B Continuous Time SDEs

Solving the SDE system in (1) for a time interval [0, T] and fixed θf requires computing integrals of
the form ∫ T

0

dht =

∫ T

0

fθf (ht, t)dt+

∫ T

0

G(ht, t)dWt.

This operation is intractable for almost any practical choice of fθf (·, ·) and G(·, ·) for two reasons.
First, the integral around the drift term fθf (·, ·) does not have an analytical solution, due both to
potential nonlinearities of the drift and to the fact that ht ∼ p(ht, t) is a stochastic variable following
an implicitly defined distribution. Second, the diffusion term involves the Itô integral (Oksendal,
1992) about Wt which multiplies the non-linear function G(·, ·).

11

For each of the SDEs in (6) and (7), we could alternatively to the Euler-Maruyama integration theme
use the Fokker-Planck-Kolmogorov equation to derive a partial differential equation (PDE) system

∂phyb(ht, t|θf)/∂t = −∇ ·
[(
fθf (ht, t) + γ ◦ rξ(ht, t)

)
phyb(ht, t|θf)

]
+∇ ·

(
1∇ ·G(ht, t)phyb(ht, t|θf)

)
,

∂ppri(ht, t)/∂t = −∇ ·
[(
γ ◦ rξ(ht, t)

)
ppri(ht, t)

]
+∇ ·

(
1∇ ·G(ht, t)ppri(ht, t)

)
,

where∇· is the divergence operator and 1 = (1, . . . , 1)>. Theoretically, these distributions can be
obtained by solving the Fokker-Planck PDE. As this requires solving a PDE which is not analytically
tractable, we instead resort to the discrete time Euler-Maruyama integration.

C Proofs

This section gives a more detailed derivation of the individual results stated in the main paper.

Lemma 1. For the process distributions3 Q0→T and P0→T the following property holds

DKL

(
Q0→T ||P0→T

)
=

1

2

∫ T

0

EQ0→T

[
fθf (ht, t)

>J−1t fθf (ht, t)
]
dt+DKL

(
pφ(θf)||ppri(θf)

)
for some T > 0, where Jt = G(ht, t)G(ht, t)

> .

Proof. Assume Euler-Maruyama discretization for the process Q0→T on arbitrarily chosen K
time points within the interval [0, T]. Then we have DKL(Q||P) denoting the Kullback-Leibler
divergence between processes Q0→T and P0→T up to discretization into T time points as:

DKL(Q||P) =

∫∫
log

∏K−1
t=0

(
N
(
ht+1|

(
fθf (ht, t) + γ ◦ rξ(ht, t)

)
∆t,Jt∆t

))
∏K−1
t=0

(
N
(
ht+1|γ ◦ rξ(ht, t)∆t,Jt∆t

))
· �

��p(h0)pφ(θf)

�
��p(h0)ppri(θf)

Q0→T dHdθf

=

K−1∑
t=0

∫∫
logN

(
ht+1|

(
fθf (ht, t) + γ ◦ rξ(ht, t)

)
∆t,Jt∆t

)
− logN

(
ht+1|γ ◦ rξ(ht, t)∆t,Jt∆t

)
Q0→T dHdθf

+DKL

(
pφ(θf)||ppri(θf)

)
.

For simplicity, let us modify notation and adopt ft := fθf (ht, t)−γ ◦ rξ(ht, t), gt := −γ ◦ rξ(ht, t),
and ∆ht+1 := ht+1 − ht. Now writing down the log(·) terms explicitly, we get

DKL(Q||P) =
1

2

K−1∑
t=0

∫∫∫ [
− (∆ht+1 − ft∆t)

>(Jt∆t)
−1(∆ht+1 − ft∆t)

+ (∆ht+1 − gt∆t)
>(Jt∆t)

−1(∆ht+1 − gt∆t)
]

· phyb(h0→T |θf)pφ(θf)dHdθf

+DKL

(
pφ(θf)||ppri(θf)

)
.

Expanding the products, removing the terms that cancel out, and rearranging the rest, we get

DKL(Q||P) =
1

2

K−1∑
t=0

∫∫ [
− f>t J−1t ft∆t+ 2∆ht+1J

−1
t ft + g>t J

−1
t gt∆t− 2∆ht+1J

−1
t gt

]
· phyb(h0→T |θf ,)pφ(θf)dHdθf

+DKL

(
pφ(θf)||p(θf)

)
.

3See the main paper for their definitions.

12

Note that from the definition of the process it follows that∫
∆ht+1 phyb(h0→T |θf)d∆ht+1 = ft∆t.

Plugging this fact into the KL term, we have

DKL(Q||P) =
1

2

K−1∑
t=0

∫ [
f>t J−1t ft∆t+ g>t J

−1
t gt∆t− 2ftJ

−1
t gt∆t

]
pφf

(θf))dθf

+DKL

(
pφ(θf)||ppri(θf)

)
.

For any pair of vectors a,b ∈ RP and symmetric matrix C ∈ RP×P , the following identity holds:
a>Ca− b>Cb = (a− b)>C(a− b) + 2a>Cb.

Applying this identity to the above, we attain

DKL(Q||P) =
1

2

K−1∑
t=0

∫ [
(ft − gt)

>J−1t (ft − gt)∆t
]
pφf

(θf)dθf +DKL

(
q(θf)||p(θf)

)
.

Plugging back the original terms and setting K to the limit, we arrive at the desired outcome

lim
K→+∞

{
1

2

K−1∑
t=0

∫ [
(fθf (ht, t))

>J−1t fθf (ht, t)∆t
]
pφf

(θf)dθf +DKL

(
pφ(θf)||ppri(θf)

)}

=
1

2

∫ [∫
fθf (ht, t)

>J−1t fθf (ht, t)pφf
(θf)dθf

]
dt+DKL

(
pφ(θf)||ppri(θf)

)
=

1

2

∫ T

0

EQ0→T

[
fθf (ht, t)

>J−1t fθf (ht, t)
]
dt+DKL

(
pφ(θf)||ppri(θf)

)
.

Theorem 1. Let p(yt|ht) be uniformly bounded likelihood function with density p(yt|ht) every-
where and Q0→T and P0→T be the joints stochastic processes defined on the hypothesis class of
the learning task, respectively. Define the true risk of a draw from Q0→T on an i.i.d. sample
Y = {y1, . . . ,yK} at discrete and potentially irregular time points t1, . . . , tK drawn from an un-
known ground-truth stochastic process G(t) as the expected model misfit as on the sample as defined
via the following risk over hypotheses H = (h0→T , θf)

R(H) = −EY∼G(t)

[
K∏
k=1

p(yk|hk)

]
, (17)

for time horizon T > 0 and the corresponding empirical risk on a data set D = {Y1, . . . ,YN} as

RD(H) = − 1

N

N∑
n=1

[
K∏
k=1

p(ynk |hk)

]
. (18)

Then the expected true risk is bounded above by the marginal negative log-likelihood of the predictor
and a complexity functional as
EH∼Q0→T

[R(H)] ≤ EH∼Q0→T
[RD(H)] + Cδ(Q0→T , P0→T), (19)

≤ − 1

N

N∑
n=1

log

(
1

S

S∑
s=1

K∏
k=1

p(ynk |h
n,s
k)

)
+ Cδ/2(Q0→T , P0→T) +

√
log(2N/δ)

2S
+K logB

(20)

≤ − 1

SN

N∑
n=1

S∑
s=1

K∑
k=1

log
(
p(ynk |h

s,n
k)
)

+ Cδ/2(Q0→T , P0→T) +

√
log(2N/δ)

2S
+K logB,

(21)

where B := maxyk,hk
p(yk|hk) is the uniform bound, S is the sample count taken independently for

each observed sequence, and the complexity functional is given as

Cδ(Q0→T , P0→T) :=

√
DKL

(
Q0→T ||P0→T

)
+ log(2

√
N)− log(δ/2)

2N

with DKL

(
Q0→T ||P0→T

)
as in Lemma 1 for some δ > 0.

13

Proof. To be able to apply known PAC bounds, we first define the hypothesis class H ∈ HK that
contain latent states hk, θf that explain the observations yk. Then, we define the true risk as

R(H) = EYk∼G(t)

[
1− 1

BK

K∏
k=1

p(yk|hk)

]
and the empirical risk as

RD(H) =
1

N

N∑
n=1

{
1− 1

BK

K∏
kn=1

p(ynk |hnk)

}
,

where we defined

BK := max
y,hk

K∏
k=1

p (yk|hk) ≤
(

max
y,hk

p
(
yk|hk

))K
.

The data set D = {Yn
k}k,n was generated by an unknown stochastic process G(t). Note that we

normalize the risks R(H) and RD(H) by the maximum of the likelihood and thereby obtaining
a possible range of these risk of [0, 1]. The likelihood can be bounded, as the term p(yk|hk) can
be bounded from above, as we model this by a Gaussian.Therefore, it is bounded, if we assume a
minimal allowed variance.

To obtain a tractable bound, it is common practice is to upper bound its analytically intractable
inverse (Germain et al., 2016b) using Pinsker’s inequality (Catoni, 2007; Dziugaite and Roy, 2017).
Here, we rely on the following theorem.

PAC-theorem (Maurer, 2004) For any [0, 1]-valued loss function giving rise to empirical and
true risk RD(H), R(H), for any distribution ∆, for any N ∈ N, for any distribution P0→T on a
hypothesis setQK , and for any δ ∈ (0, 1], the following holds with probability at least 1− δ over the
training set D ∼ ∆N :

∀Q0→T : EH∼Q0→T
[R(H)] ≤ EH∼Q0→T

[RD(H)] +

√√√√KL (Q0→T ‖ P0→T) + log
(

2
√
N
δ

)
2N

Here, KL (Q0→T ‖ P0→T) acts as a complexity measure that measures, how much the posterior
predictive governing the SDE Q0→T needed to be adapted to the data when compared to an a priori
chosen SDE that could alternatively have generated data P0→T . In our situation, Q0→T is obtained
by our approximation scheme, resulting in a bounded likelihood of observations yk which factorizes
over different observations n. The P0→T can be arbitrarily chosen as long as it does not depend
on the observations. As mentioned in the main paper, we chose an SDE with the same diffusion
term which also factorizes over observations. Using this setting, we can analytically compute the
KL-distance (as shown in Lemma 1).

On the right hand side of this PAC-bound, we need to evaluate EH∼Q0→T
[RD(H)]. To this end, we

note

EH∼Q0→T
[RD(H)] =

1

N

N∑
n=1

EH∼Q0→T

[
1− 1

BK

(
K∏
k=1

p(ynk |hnk)

)]

= 1− 1

N

N∑
n=1

EH∼Q0→T

[
1

BK

K∏
k=1

p(ynk |hnk)

]
Hoeffding
≤ 1− 1

SN

N∑
n=1

S∑
s=1

[
1

BK

K∏
k=1

p(ynk |h
n,s
k)

]
+

√
log(2N/δ)

2S

=
1

N

N∑
n=1

{
1− 1

S

S∑
s=1

[
1

BK

K∏
k=1

p(ynk |h
n,s
k)

]}
+

√
log(2N/δ)

2S

− log(z)≥1−z
≤ − 1

N

N∑
n=1

log

(
1

S

S∑
s=1

K∏
k=1

p(ynk |h
n,s
k)

)
+ logBK +

√
log(2N/δ)

2S

14

Jensen’s ineq.
≤ − 1

SN

N∑
n=1

S∑
s=1

K∑
k=1

[
log p(ynk |h

n,s
k)
]

+ logBK +

√
log(2N/δ)

2S
,

where we have used Hoeffding’s inequality for estimating the true expectation over hypotheses with a
K samples trace hn,sk , k = 1, . . . ,K, s = 1, . . . , S for each observation n. As we approximate the
integral for each time-series n separately via sampling, we require Hoeffding to hold simultaneously
for all n. Using a union bound, we have to scale δ for each n by N . Splitting confidences between
the PAC-bound and the sampling based approximation results an additional factor of 2. With δ/(2N),
the corresponding inequality holds with a probability of P > δ/2. Also using δ/2 in PAC-theorem,
we obtain that with P ≥ 1− δ we have for all Q0→T that

EH∼Q0→T
[R(H)] ≤ EH∼Q0→T

[RD(H)] +

√√√√KL (Q0→T ‖ P0→T) + log
(

2
√
N

δ/2

)
2N

≤ − 1

N

N∑
n=1

log

(
1

S

S∑
s=1

K∏
k=1

p(ynk |h
n,s
k)

)
+

√√√√KL (Q0→T ‖ P0→T) + log
(

2
√
N

δ/2

)
2N

+ logBK +

√
log(2N/δ)

2S

≤ − 1

SN

N∑
n=1

S∑
s=1

K∑
k=1

[
log p(ynk |h

n,s
k)
]

+

√√√√KL (Q0→T ‖ P0→T) + log
(

2
√
N

δ/2

)
2N

+ logBK +

√
log(2N/δ)

2S

Corollary 1. Given a L-Lipschitz continuous function set{
fnθ (x) : R→ [0, 1]

∣∣∣n = 1, · · · , N
}⋃{

gθ(x) : R→ [0,+∞]
}
,

for the two losses:

l1(θ) = −
N∑
n=1

fnθ (x) + gθ(x) and l2(θ) = −
N∑
n=1

log fnθ (x) + gθ(x),

the sequential updates (θ0 := θ)

θ(n) ← θ(n−1) + αn∇
(

log fnθ(n−1)(x)
)
, n = 1, . . . , N,

θ(N+1) ← θ(N) − αN+1∇gθ(N)(x),

where αn ∈ (0, fn
θ(n−1)(x)/L) ∀n and αN+1 ∈ (0, 1/L), satisfy both l1(θ(N+1)) ≤ l1(θ) and

l2(θ(N+1)) ≤ l2(θ).

Proof. As we only consider updates in θ for constant x, we simplify the notation for this proof to
fn(θ) := fnθ (x), g(θ) = gθ(x). I.e. we have as the two loss terms

l1(θ) = −
N∑
n=1

fn(θ) + g(θ) and l2(θ) = −
N∑
n=1

log fn(θ) + g(θ).

In general we have with log f(θ) < f(θ) that l1(θ) < l2(θ). Similarly we have

∇l2(θ) = −
∑
n

1

fn(θ)︸ ︷︷ ︸
≥1

∇fn(θ) +∇g(θ) ≤ −
∑
n

∇fn(θ) +∇g(θ) = ∇l1(θ).

15

Due to the sequential updates we can consider each term separately. For an L-Lipschitz function
fn(θ), we have that for arbitrary x, y

f(y) ≤ f(x) +∇f(x)>(y − x) +
L

2
||y − x||22.

Choosing y = θ(n−1) and x = θ(n) = θ(n−1) + αn∇ log fn this gives us

f(θ(n−1)) ≤ f(θ(n))− αn
fn(θ(n))

||∇fn(θ(n))||22 +
Lα2

n

2fn(θ(n))2
||∇fn(θ(n))||22

= fn(θ(n))− αn
fn(θ(n))︸ ︷︷ ︸
≥0

(
1− Lαn

2fn(θ(n))

)
︸ ︷︷ ︸

>0

||∇fn(θ(n))||22 ≤ fn(θ(n)),

and hence chaining the update steps gives the desired result.

That is, updating the terms in l2(θ) sequentially, one can ensure concurrent optimization of l1(θ).
Note that l1(θ) and l2(θ) are not necessarily dual objectives, hence may have different extrema.
Nevertheless, a gradient step that decreases one loss also decreases the other with potentially a
different magnitude. In practice, we observe this behavior to also hold empirically for joint gradient
update steps with shared learning rates. Applying Lemma 2 to the setup in Theorem 2, we establish a
useful link between Empirical Bayes and PAC learning.

Theorem 2 (strong convergence). Let hθt be an Itô process as in (4) with drift parameters θ and
its Euler-Maruyama approximation h̃θt for some regular step size ∆t > 0. For some coefficient
R > 0 and any T > 0, the following inequality holds

E

[
sup

0≤t≤T

∣∣∣Eθ[hθt]− 1

S

S∑
s=1

h̃θ
(s)

t

∣∣∣] ≤ R∆t1/2,

as S →∞, where {θ(s) ∼ pφ(θf)|s = 1, . . . , S} are i.i.d. draws from a prior pφ(θf).

Proof: The Euler-Maruyama (EM) approximation converges strongly as

E
[∣∣hθT − h̃

θ

T

∣∣] ≤ R∆t1/2,

for a positive constant R and a suitably small step size ∆t as discussed e.g. by Kloeden and Platen
(2011). To simplify the mathematical notation we follow their approach of comparing the absolute
error of the end of the trajectory throughout the proof. As our sampling scheme is unbiased it is a
consistent estimator and we have that asymptotically for S →∞

1

S

S∑
s=1

h̃
θ(s)
T = Eθ[h̃

θ
T].

We then have for the marginal hT , h̃T that

E
[∣∣hT − h̃T

∣∣] = E
[∣∣EθhθT − Eθh̃θT ∣∣] = E

[∣∣Eθ [hθT − h̃
θ

T

] ∣∣]
≤ E

[
Eθ

[∣∣hθT − h̃
θ

T

∣∣]] ≤ Eθ [R∆t1/2
]

= R∆t1/2,

where the first inequality is due to Jensen and the second due to the strong convergence result for a
fixed set of parameters.

D Computational Cost

We present the runtimes of the different approaches in Table 3. D-BNN samples the weights of
the neural network directly leading to the runtime term O(MTF). All other approches do not
sample the weights but the linear activations of the each data points leading to O(2MTF). When
we apply empirical Bayes, we dot not use any regularization term on the weights, while all other

16

approaches contain a penalty term with cost O(W). Using the PAC-framework, we employ a second
regularization term that leads to an additional runtime cost of O(TMD3). However, the cubic cost
in D is invoked by inverting the diffusion matrix G(ht, t) and can be further reduced by choosing a
simpler form for G(ht, t) (e.g. diagonal). In case that prior knowledge is available in ODE form, we
need to compute the corresponding drift term for each time point and each MC sample leading to the
term O(MTP).

Table 3: Computational cost analysis in FLOPs for time series of length T. M: Number of Monte
Carlo Samples. W: Number of weights in the neural net. F: Forward pass cost of a neural net. L: Cost
for computing the likelihood term. D: Number of dimensions. P: Cost of a prior SDE integration.

Model Training per Iteration
D-BNN (SGLD) O(MTF +MTDL+W)
Variational Bayes O(2MTF +MTDL+W)
E-Bayes O(2MTF +MTDL)
E-PAC-Bayes O(2MTF +MTDL+W + TMD3)
E-Bayes-Hybrid O(2MTF +MTDL+MTP)
E-PAC-Bayes-Hybrid O(2MTF +MTDL+W + TMD3 +MTP)

E The Algorithm and a Visualization of the Pipeline

A pseudo-code algorithm of the proposed pipeline is given in Algorithm 1. Figure 2 summarizes the
proposed method in an illustration.

F Further Details on The Experiments

Here we provide the details of the experiment setup we used in obtaining our results reported in the
main paper. We observed our results to be robust against most of the design choices.

F.1 Lorenz Attractor

We took 200000 Euler-Maruyama steps ahead with a time step size of 10−4 and downsampling by
factor 0.01, which gives a sequence of 2000 observations with frequency 0.01. We split the first
half of this data set into 20 sequences of length 50 and use them for training, and the second half
to 10 sequences of length 100 and use for test. For all model variants, we used an Adam optimizer
learning rate 0.001, minibatch size of two, a drift net with two hidden layers of 100 neurons and
softplus activation function.We trained all models for 100 epochs and observed this training period to
be sufficient for convergence.

F.2 CMU Motion Capture

In this experiment, we tightly follow the design choices reported by Yildiz et al. (2019) to maintain
commensurateness. This setup assumes the stochastic dynamics are determined in a six-dimensional
latent space. Yildiz et al. (2019) use an auto-encoder to map this latent space to the 50−dimensional
observation space back and forth. We adopt their exact encoder-decoder architecture and incorporate
it into our BNSDE, arriving at the data generating process

θf ∼ pφf
(θf),

dht|θf ∼ fθf
(
bλ(ht), t

)
dt+G

(
bλ(ht), t

)
dβt,

zt|ht ∼ N (zt|aψ(ht), 0.5 · 10−61),

yt|zt ∼ N (yt|zt, 0.5 · 10−61), ∀t ∈ t.

Above, bλ(·, ·) is the encoder which takes the observations of the last three time points as input,
passes them through two dense layers with 30 neurons and softplus activation function, and then

17

Σ

Measurements

dht = f(ht, t)dt+G(ht, t)dβt
BLACK BOX SDE

dht = r(ht, t)dt
WHITE BOX ODE

dht =
(
f(ht, t) + γ ◦ r(ht, t)

)
dt+G(ht, t)dβt

HYBRID SDE

Research Question

OUR PROPOSED PIPELINE

Data Scientist Domain Expert

trained by

PAC Bound
Eht∼Q0→T

[
p(xt|ht)

]
+ C
(
Q0→T , P0→T

)
EMPIRICAL PAC BAYES

< tied gradient
updates

Training Objective
logEht∼Q0→T

[
p(xt|ht)

]︸ ︷︷ ︸
Empirical Bayes

+ C
(
Q0→T , P0→T

)

Figure 2: Illustration of the research question we pose (above) and our proposed solution (below).

linearly projects them to a six-dimensional latent space, where the dynamics are modeled. The
decoder aψ(ht) follows the same chain of mapping operations in reverse order. The only difference
is that the output layer of the decoder emits only one observation point, as opposed to the encoder
admitting three points at once.

The drift function fθf (·, ·) is governed by another separate Bayesian neural net, again with one hidden
layer of 30 neurons and softplus activation function on the hidden layer. The diffusion function is
fixed to be a constant.

We train all models except SGLD with the Adam optimizer for 3000 epochs on seven randomly
chosen snippets at a time with a learning rate of 10−3. We use snippet length 30 for the first 1000
epochs, 50 until epoch 2500, and 100 afterwards. SGLD demonstrates significant training instability
for this learning rate, hence for it we drop its learning rate to the largest possible stable value 10−5

and increase the epoch count to 5000.

18

Algorithm 1: E-PAC-Bayes-Hybrid Loss

Input: set of N trajectories D, prior drift rξ(·, ·), time points t, drift fθf (·, ·), diffusion
G(·, ·), weight distribution pφ(θf), number of samples S, prior parameter γ

Output: training objective loss

// init. marginal log-likelihood (mll) and kl
mll← 0; kl← 0
for n ∈ {1, . . . , N} do // for each trajectory

for s ∈ {1, . . . , S} do // and each sample
// sample initial state and weights
hn,s0 ∼ p(h0)
θn,sf ∼ pφ(θf)
// for each of the K steps
for k ∈ {1, . . . ,K} do

// get drift,prior,diffusion output
fn,sk ← fθn,s

f
(hn,sk−1, tk−1)

rn,sk ← rξ(h
n,s
k−1, tk−1)

Gn,sk ← G(hn,sk−1, tk−1)
// sample stochasticity
∆tk ← tk − tk−1
Wn,s
k ∼ N (0,∆tk1)

// update state
hn,sk ← hn,sk−1 + (fn,sk + γrn,sk)∆tk +Gn,sk Wn,s

k
// and update mll and kl
mll← mll + 1

SN log p(ynk |h
n,s
k)

kl← kl + 1
2S f

n,s
k
>(Gn,sk Gn,sk

>)−1fn,sk ∆tk
end

end
end
// add penalty for modified drift distribution

kl← kl +DKL

(
pφ(θf)||ppri(θf)

)
// and assign final loss

loss← −mll +
√(

kl + log(4
√
N/δ)

)
/(2N)

// to be returned and optimized
return loss

G Further Experiments

G.1 Lotka Volterra

We demonstrate the benefits of incorporating prior knowledge although it is a coarse approximation
to the true system. We consider the Lotka-Volterra system specified as:

dxt = (θ1xt − θ2xtyt)dt+ 0.2 dβt,

dyt = (−θ3yt + θ4xtyt)dt+ 0.3 dβt.

with θ = (2.0, 1.0, 4.0, 1.0). Assuming that the trajectory is observed on the interval t = [0, 1] with
a resolution of dt = 0.01, we compare the following three methods: i) the black-box BNSDE without
prior knowledge, ii) the white-box SDE in (7) representing partial prior knowledge (parameters are
sampled from a normal distribution centered on the true values with a standard deviation of 0.5), and
finally iii) combining them in our proposed hybrid method. The outcome is summarized in Figure 3.
While the plain black-box model delivers a poor fit to data, our hybrid BNSDE brings significant
improvement from relevant but inaccurate prior knowledge.

19

1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00

t

0

2

4

6

8

10

x
1
(t

),
x

2
(t

)

data

BNSDE

Prior

BNSDE+Prior

Figure 3: Lotka-Volterra visualization. Error bars indicate three standard deviations over 10 trajecto-
ries starting from the true value at t = 1. The predictions over 200 time steps (dt = 0.01) are for: i)
a BNSDE trained without prior knowledge, ii) an SDE with known prior parameters, iii) the joint
hybrid BNSDE. The dashed lines are the observed trajectories for xt and yt.

−15
−10

−5
0

5
10

15 −20

−10

0

10

20
10

20

30

40

Train
Test

Figure 4: Visualization of the stochastic Lorenz attractor. Of the 2000 observations, the first 1000
constitute the training data (marked in blue), while the second 1000 are the test observations (marked
in red). Note the qualitative difference of the two sets.

G.1.1 Experimental details

We took 105 Euler-Maruyama steps on the interval [0, 10] with a time step size of 10−4, downsampling
them by a factor of 100 giving us 1000 observations with a frequency of 0.01. We take the first 500
observations on the interval [0,5] to be the training data and the observations in (5, 10] to be the test
data. Each sequence is split into ten sequences of length 50. Assuming the diffusion parameters to be
known and fixed, both BNSDEs (i.e. with and without prior knowledge) get a 4 layer net as the drift
function with 50 neurons per layer and ReLU activation functions. The BNSDE with prior knowledge
as well as the raw SDE estimate each get an initial sample of θ̃ parameters as the prior information
by sampling from a normal distribution centered around the true parameters (θ̃ ∼ N (θ̃|θ, σ214)).
The models are each trained for 50 epochs with the Adam optimizer and a learning rate of 1e− 3.
Since both the latent and observed spaces are only two dimensional, we did not need an observation
model in this experiment. We directly linked the BNSDE to the likelihood.

20

G.2 Lorenz Attractor

As discussed in the main paper, the model is trained solely on the first 1000 observations of a trajectory
consisting of 2000 observations, leaving the second half for the test evaluation. Figure 4 visualizes
the qualitative difference between the two. Note also the single loop the trajectory performs which
we will see again in the 1d projections below. To visualize explore the qualitative difference of our
proposed model with weak prior knowledge compared to one lacking this knowledge we consider the
situation where we we have structural prior knowledge only about the third SDE (i.e. the penultimate
case in Table 1 with ρ = [0, 0, 1].

In order to properly visualize it we switch from the 3d plot to 1d plots showing always one of the
three dimensions vs the time component. We always start at T = 10, forcasting either 100 steps (as
in the numerical evaluation), 200 or 1000 steps. All the following figures show the mean trajectory
averaged over 21 trajectories, as well as an envelope of ± 2 standard deviations. Figure 5 visualizes
that at that time scale the qualitative behavior is similar without clear differences. Doubling the
predicted time interval as shown in Figure 6 the baseline starts to diverge from the true test sequence,
while our proposed model still tracks it closely be it at an increased variance. Finally predicting for
1000 time steps (Figure 7) the chaotic behavior of the Lorenz attractor becomes visible as the mean
in both setups no longer tracks the true trajectory. Note however that the baseline keeps has rather
small variance and a strong tendency in its predictions that do not replicate the qualitative behavior of
the Lorenz attractor. While the proposed model also shows an unreliable average, the large variance,
which nearly always includes the true trajectory shows that the qualitative behavior is still replicated
properly by individual trajectories of the model. See Figure 8 for seven individual trajectories of each
of the two models. All trajectories of E-PAC-Bayes-Hybrid show the qualitatively correct behavior,
including even the characteristic loop.

21

0 20 40 60 80 100
steps

4

6

8

10

12
x

Truth
E-Bayes
E-PAC-Bayes-Hybrid

(a) x coordinate over time

0 20 40 60 80 100
steps

2

4

6

8

10

12

14

y

Truth
E-Bayes
E-PAC-Bayes-Hybrid

(b) y coordinate over time

0 20 40 60 80 100
steps

17.5

20.0

22.5

25.0

27.5

30.0

32.5

35.0

z

Truth
E-Bayes
E-PAC-Bayes-Hybrid

(c) z coordinate over time

Figure 5: Predicting 100 time steps ahead.

22

0 20 40 60 80 100 120 140 160 180 200
steps

2.5

5.0

7.5

10.0

12.5

15.0
x

Truth
E-Bayes
E-PAC-Bayes-Hybrid

(a) x coordinate over time

0 20 40 60 80 100 120 140 160 180 200
steps

0

5

10

15

y

Truth
E-Bayes
E-PAC-Bayes-Hybrid

(b) y coordinate over time

0 20 40 60 80 100 120 140 160 180 200
steps

15

20

25

30

35

40

z

Truth
E-Bayes
E-PAC-Bayes-Hybrid

(c) z coordinate over time

Figure 6: Predicting 200 time steps ahead.

23

0 200 400 600 800 1000
steps

10

0

10

20
x

Truth
E-Bayes
E-PAC-Bayes-Hybrid

(a) x coordinate over time

0 200 400 600 800 1000
steps

20

10

0

10

20

y

Truth
E-Bayes
E-PAC-Bayes-Hybrid

(b) y coordinate over time

0 200 400 600 800 1000
steps

10

20

30

40

z

Truth
E-Bayes
E-PAC-Bayes-Hybrid

(c) z coordinate over time

Figure 7: Predicting 1000 time steps ahead.

24

10 12 14 16 18 20
time

15

10

5

0

5

10

15

x

truth
E-Bayes
E-PAC-Bayes-Hybrid

(a) x coordinate over time

10 12 14 16 18 20
time

20

10

0

10

20

y

truth
E-Bayes
E-PAC-Bayes-Hybrid

(b) y coordinate over time

10 12 14 16 18 20
time

10

20

30

40

z

truth
E-Bayes
E-PAC-Bayes-Hybrid

(c) z coordinate over time

Figure 8: Predicting 1000 time steps ahead. Shows individual trajectories.

25

	Introduction
	Background
	The Proposed Method
	A Hybrid BNSDE
	Learning via Empirical Bayes
	A Trainable PAC Bound
	The Training Algorithm

	Experiments
	Conclusion
	Related Work
	Continuous Time SDEs
	Proofs
	Computational Cost
	The Algorithm and a Visualization of the Pipeline
	Further Details on The Experiments
	Lorenz Attractor
	CMU Motion Capture

	Further Experiments
	Lotka Volterra
	Experimental details

	Lorenz Attractor

