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Abstract

Mesh-based simulations are central to modeling complex physical systems in many
disciplines across science and engineering, as they support powerful numerical
integration methods and their resolution can be adapted to strike favorable trade-
offs between accuracy and efficiency. Here we introduce MESHGRAPHNETS, a
graph neural network-based method for learning simulations, which leverages mesh
representations. Our model can be trained to pass messages on a mesh graph and to
adapt the mesh discretization during forward simulation. We show that our method
can accurately predict the dynamics of a wide range of physical systems, including
aerodynamics, structural mechanics, and cloth– and do so efficiently, running 1-2
orders of magnitude faster than the simulation on which it is trained. Our approach
broadens the range of problems on which neural network simulators can operate
and promises to improve the efficiency of complex, scientific modeling tasks.

1 Introduction

State-of-the art modeling of complex physical systems often employs mesh representations, and
mesh-based finite element methods are ubiquitous in structural mechanics [23, 38], aerodynamics
[10, 26], electromagnetics [24], geophysics [27, 30], and acoustics [19] and many other domains.
Meshes enables optimal use of the resource budget, by allocating greater resolution to regions of the
simulation domain where strong gradients are expected or more accuracy is required, such as the
tip of an airfoil in an aerodynamics simulation. But despite their advantages, meshes have received
relatively little attention in machine learning for physical predictions; most methods focus on grids,
owing to the popularity and hardware support for CNN architectures [13].

We introduce MESHGRAPHNETS, a learnable simulation framework which capitalizes on the ad-
vantages of adaptive mesh representations. Our method works by encoding the simulation state
into a graph, and performing computations in two separate spaces: the mesh-space, spanned by the
simulation mesh, and the Euclidean world-space in which the simulation manifold is embedded
(see Figure 3a). By passing messages in mesh-space, we can approximate differential operators
that underpin the internal dynamics of most physical systems. Message-passing in world-space can
estimate external dynamics, not captured by the mesh-space interactions, such as contact and colli-
sion. Unstructured irregular meshes support learning dynamics which are independent of resolution,
allowing variable resolution and scale at runtime. This allows us learn the dynamics of vastly different
physical systems, from cloth simulation over structural mechanics to fluid dynamics directly from
data, providing only very general biases such as spatial equivariance. We demonstrate that we can
reliably model materials with a rest state such as elastics (which are challenging for mesh-free models
[28]), outperform particle- and grid-based baselines, and generalize to more complex dynamics than
seen in training.
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Figure 1: Diagram of MESHGRAPHNETS operating on our SPHEREDYNAMIC domain (video). The
model uses an Encode-Process-Decode architecture trained with one-step supervision, and can be
applied iteratively to generate long trajectories at inference time. The encoder transforms the input
mesh M t into a graph, adding extra world-space edges. The processor performs several rounds of
message passing along mesh edges and world edges, updating all node and edge embeddings. The
decoder extracts the acceleration for each node, which is used to update the mesh to produce M t+1.

2 Related Work

Simulations of high-dimensional physical systems are often slow, and there is an increased interest in
using machine learning to provide faster predictions, particularly in engineering [1, 5, 14, 11, 39]
and graphics [37, 32, 36]. Learned simulations can be useful for real-world predictions where the
physical model, parameters or boundary conditions are not fully known [9]. Conversely, the accuracy
of predictions can be increased by including specialized knowledge about the system modelled in
the form of loss terms [34, 17], or by physics-informed feature normalization [31]. All methods
mentioned so far are based on convolutional architectures on regular grids. Although this is by far
the most widespread architecture for learning physical prediction models, particle representations on
random forests [16] or graph neural network (GNN) architectures [18, 33, 28] have been used with
success for modeling liquids and granular materials.

There is increased attention in using meshes for learned geometry and shape processing [7, 22, 12],
but despite the widespread use in classical simulators, adaptive mesh representations have not seen
much use in learnable prediction model, with a few notable exceptions. Belbute-Peres et al. [4]
embed a differentiable aerodynamics solver in a graph convolution (GCN) [15] prediction pipeline
for super-resolution in aerodynamics predictions. Our method has similarities, but without a solver in
the loop, which potentially makes it easier to use and adapt to new systems. In Section 4 we show
that MESHGRAPHNETS are better suited for dynamical prediction than GCN-based architectures.
Finally, Graph Element Networks [2] uses meshes over 2D grid domains to more efficiently compute
predictions and scene representations. Notably they use small planar systems (< 50 nodes), while we
show how to scale mesh-based predictions to complex 3D systems with thousands of nodes.

3 Learning the dynamics model

We describe the state of the system at time t using a simulation mesh M t = (V,EM ) with nodes
V connected by mesh edges EM . Each node i ∈ V is associated with a reference mesh-space
coordinate ui which spans the simulation mesh, and additional dynamical quantities qi that we want
to model. Eulerian systems (Figure 2c,d) model the evolution of continuous fields such as velocity
over a fixed mesh, and qi sample these fields at the mesh nodes. In Lagrangian systems, the mesh
represents a moving and deforming surface or volume (e.g. Figure 2a,b), and contains an extra
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Figure 2: Our model can predict dynamics of vastly different physical systems, from structural
mechanics over cloth to fluid dynamics. We demonstrate this by simulating (a) a flag waving in the
wind, (b) a deforming plate, (c) flow of water around a cylinder obstacle, and (d) the dynamics of air
around the cross-section of an aircraft wing (videos). The color map shows the von-Mises stress in
(b), and the x-component of the velocity field in (c),(d).

world-space coordinate xi describing the dynamic state of the mesh in 3D space, in addition to the
fixed mesh-space coordinate ui (Figure 3a).

The task is to learn a forward model of the dynamic quantities of the mesh at time t+1 given the
current mesh M t and (optionally) a history of previous meshes {M t−1, ...,M t−h}. We propose
MESHGRAPHNETS, a graph neural network model with an Encode-Process-Decode architecture
[3, 28], followed by an integrator. Figure 1 shows a visual scheme of the architecture. As an extension
of this method, we can also learn to adapt the mesh resolution during model rollouts (adaptive
remeshing). This extension is described in Section A.3.

Encoder The encoder encodes the current mesh M t into a multigraph G = (V,EM , EW ). We
assign mesh nodes to graph nodes V , and mesh edges to mesh-space edges EM in the graph. This
subgraph serves to compute the internal dynamics of the mesh. For Lagrangian systems, we add
world edges EW to the graph, to enable learning external dynamics such as (self-) collision and
contact, which are non-local in mesh-space.2 World-space edges are created by spatial proximity:
that is, given a fixed-radius rW on the order of the smallest mesh edge lengths, we add a world edge
between nodes i and j if |xi − xj | < rW , excluding node pairs already connected in the mesh. This
encourages using world edges to pass information between nodes that are spatially close, but distant
in mesh space (Figure 3a).

To achieve spatial equivariance, positional features are provided as relative edge features. We encode
the relative displacement vector in mesh space uij = ui − uj and its norm |uij | into the mesh edges
eMij ∈ EM . Then, we encode the relative world-space displacement vector xij and its norm |xij | into
both mesh edges eMij ∈ EM and world edges eWij ∈ EW . All remaining dynamical features qi, as
well as a one-hot vector indicating node type, are provided as node features in vi. The encoder uses
MLPs εM , εW , εV to encode the respective concatenated features into mesh edge eMij , world edge
eWij , and node vi embeddings. See section A.1 for more details on input encoding.

Processor The processor consists of L identical message passing blocks, which generalize Graph-
Net blocks [29] to multiple edge sets. Each block Pi contains a separate set of network parameters,
and is applied in sequence to the output of the previous block, updating the mesh edge eMij , world
edge eWij , and node vi(l) embeddings to e′Mij , e′Wij , v′i respectively by

e′
M
ij ← fM (eMij ,vi,vj) , e′

W
ij ← fW (eWij ,vi,vj) , v′i ← fV (vi,

∑
j

e′
M
ij ,

∑
j

e′
W
ij ) (1)

where fM , fW , fV are implemented using MLPs with a residual connection.

2From here on, any mention of world edges and world coordinates applies only to Lagrangian systems; they
are omitted for Eulerian systems.
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Figure 3: (a) Simulation of a cloth interacting with a sphere. In red, we highlight two nodes which are
close in world-space but far in mesh-space, between which a world edge may be created. (b) Rollout
of our model versus ground truth on dataset AIRFOIL. Adaptive meshing allows us to accurately
predict dynamics at large and small scales. The grid-based U-Net baseline is capable of making good
predictions at large scales, but it cannot resolve the smaller scales, despite using four times more cells
than our model (video).

Decoder and State Updater For predicting the time t+1 state from the time t input, the decoder
uses an MLP δV to transform the latent node features vi after the final processing step into one or
more output features pi.

Each output feature is then processed by a forward-Euler integrator with ∆t = 1 to update the
dynamical quantity qt

i −→ qt+1
i . For first-order systems the output pi is integrated once to update

qt+1
i = pi + qt

i, while for second-order integration happens twice: qt+1
i = pi + 2qt

i − qt−1.
Additional output features pi are also used to make direct predictions of auxiliary quantities such as
pressure or stress. For domain-specific details on decoding, see Section A.1. Finally, the output mesh
nodes V are updated using qt+1

i to produce M t+1.

Domains We evaluated our method on a variety of systems with different underlying PDEs (Fig-
ure 2). FLAGDYNAMIC and SPHEREDYNAMIC show a cloth, represented as an adaptive triangular
mesh, interacting with wind and an obstacle, respectively. DEFORMINGPLATE is a tetrahedral, quasi-
static simulation of a plate being bent by an actuator. We also simulated incompressible flow around
an obstacle CYLINDERFLOW, as well as the compressible aerodynamics around an airfoil wing
AIRFOIL. The simulation meshes vary from regular to highly irregular: the edge lengths of dataset
AIRFOIL range between 2 · 10−4m to 3.5m, and we also simulate meshes which dynamically change
resolution over the course of a trajectory. For the Lagrangian systems (cloth and DEFORMINGPLATE)
we model the world-space position as a dynamical quantity, while for the Eulerian fluid dynamics
domains we model the momentum field and, for AIRFOIL, the density field. Full details on the
datasets and the model’s input and target features for each domain can be found in Section A.1.

Model training We trained our dynamics model by supervising on the per-node output features pi

produced by the decoder using a L2 loss between pi and the corresponding ground truth values p̄i.
Additional training details are provided in Section A.2.

4 Results

We tested our MESHGRAPHNETS model on our four experimental domains, and compared it
to three different baseline models. Our main findings are that MESHGRAPHNETS are able to
produce high-quality rollouts on all domains, outperforming particle- and grid-based baselines,
while being significantly faster than the ground truth simulator, and generalizing to much larger
and more complex settings at test time. Videos of rollouts, as well as comparisons, can be found
at https://sites.google.com/view/meshgraphnets. Even though our model was trained on next-step
predictions, model rollouts remain stable over hundreds of time steps, and visually the dynamics
remain plausible and faithful to the ground truth. Table 1 shows 1-step prediction and rollout errors
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Figure 4: Our model outperforms GCN and CNN-based baselines (a). (b) GNS diverges on cloth
datasets (b); providing mesh-space positions (GNS+mesh-pos) helps, but still fails on dynamic
meshes (c).

in all of our datasets, while qualitative and quantitative comparisons are provided in Figure 3 and
Figure 4.

Computational efficiency Our approach is consistently faster than ground truth solvers by one to
two orders of magnitude on all domains (see Table 1 for inference and rollout times). We believe this
is due to both being able to take much larger timesteps than classical solvers, and neural networks’
natural propensity for parallelization and running on fast accelerators. While highly-parallel solvers
exist for specific problems, complex domains or interfacing (e.g. cloth collision resolution) often
constrain parallelism. In practice, general-purpose engineering simulators often do not parallelize
well, and GPU-accelerated versions are rarely available. Our model’s strong efficiency advantage
means it may be applicable in situations where computing costs are otherwise prohibitive.

Generalization Our MESHGRAPHNETS model generalizes well outside of the training distribu-
tion, with respect to underlying system parameters, mesh shapes, and mesh size. This is because
the architectural choice of using relative encoding on graphs has shown to be very conducive to
generalization [28]. Also, by forcing the network to make predictions on very irregularly-shaped and
dynamically changing meshes, we encourage learning resolution-independent physics.

In AIRFOIL, we evaluate the model on steeper angles (−35◦...35◦ vs −25◦...25◦ in training) and
higher inflow speeds (Mach number 0.7...0.9 vs 0.2...0.7 in training). In both cases, the behavior
remains plausible (video) and RMSE raises only slightly from 11.5 at training to 12.4 for steeper
angles and 13.1 for higher inflow speeds. We also trained a model on a FLAGDYNAMIC variant
with wind speed and directions varying between trajectories, but constant within each trajectory. At
inference time, we can then vary wind speed and direction freely (video). This shows that the local
physical laws our models learns can extrapolate to untrained parameter ranges.

We also trained a model in the FLAGDYNAMIC domain containing only simple rectangular cloth, and
tested its performance on three disconnected fish-shaped flags (video). The learned dynamics model
generalized to the new shape, and the predicted dynamics were visually similar to the ground truth
sequence. In a more extreme version of this experiment, we test that same model on a windsock with
tassels (video). Not only has the model never seen a non-flat starting state during training, but the
dimensions are also much larger — the mesh averages at 20k nodes, an order of magnitude more than

Dataset
# nodes
(avg.) # steps tmodel

ms/step
tfull

ms/step
tGT

ms/step

RMSE
1-step
×10−3

RMSE
rollout-50
×10−3

RMSE
rollout-all
×10−3

FLAGSIMPLE 1579 400 18.8 19.4 4165.9 1.08± 0.02 92.6± 5.0 139.0± 2.7
FLAGDYNAMIC 2767 250 43.2 836.5 26199.1 1.57± 0.02 72.4± 4.3 151.1± 5.3
SPHEREDYNAMIC 1373 500 31.5 139.5 1610.4 0.292± 0.005 11.5± 0.9 28.3± 2.6
DEFORMINGPLATE 1271 400 24.3 32.5 2892.9 0.25± 0.05 1.8± 0.5 15.1± 4.0
CYLINDERFLOW 1885 600 20.7 23.2 819.6 2.34± 0.12 6.3± 0.7 40.88± 7.2
AIRFOIL 5233 600 37.1 38.1 11014.7 314± 36 582± 37 11529± 1203

Table 1: Left: Inference timings of our model per step on a single GPU, for pure neural network
inference (tmodel) and including remeshing and graph recomputation (tfull). Our model has a
significantly lower running cost compared to the ground truth simulation (tGT). Right: Errors of our
methods for a single prediction step (1-step), 50-step rollouts, and rollout of the whole trajectory.
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seen in training. This result shows the strength of learning resolution and scale-independent models:
we do not necessarily need to train on costly high-resolution simulation data; we may be able to learn
to simulate large systems that would be too slow on conventional simulators, by training on smaller
examples and scaling up at inference time.

Comparison to mesh-free GNS model We compared our method to the particle-based method
GNS [28] on the fixed-mesh dataset FLAGSIMPLE to study the importance of mesh-space embedding
and message-passing. As in GNS, the encoder builds a graph with fixed radius connectivity (10-20
neighbors per node), and relative world-space position embedded as edge features. As GNS lacks the
notion of cloth’s resting state, error accumulates dramatically and the simulation becomes unstable,
with slight improvements if providing 5 steps of history (Figure 4b).

We also explored a hybrid method (GNS+mesh-pos) which adds a mesh-space relative position
feature uij to the GNS edges. This yields rollout errors on par with our method (flattening after
50 steps due to decoherence in both cases), however, it tends to develop artifacts such as entangled
triangles, which indicate a lack of reliable understanding of the mesh surface (video). On irregularly
spaced meshes (FLAGSIMPLE), GNS+mesh-pos was not able to produce stable rollouts at all. A fixed
connectivity radius will always oversample high-res regions, and undersample low-res regions of the
mesh, leading to instabilities and high rollout errors (Figure 4c). We conclude that both having access
to mesh-space positions as well as passing messages along the mesh edges are crucial for making
predictions on irregularly spaced meshes.

Comparison to GCNs We implemented the GCN architecture from Belbute-Peres et al. [4] (with-
out the super-resolution component) originally designed for a simpler aerodynamic steady-state
prediction task (see Section A.4.2). On the much richer AIRFOIL task, however, GCN was unable to
obtain stable rollouts. This is not simply a question of capacity; we created a hybrid (GCN-MLP) with
our model (linear layers replaced by 2-hidden-layer MLPs + LayerNorm; 15 GCN blocks instead of
6), but the rollout quality was still poor (Figure 4a, video). We believe the key reason GCN performs
worse is the lack of relative positional encoding, which makes the GCN less likely to learn local
physical laws and more prone to overfitting.

Comparison to grid-based methods (CNNs) Arguably the most popular methods for predicting
physical systems are grid-based convolutional architectures. It is fundamentally hard to simulate
Lagrangian deforming meshes with such methods, but we can compare to grid-based methods on
the Eulerian 2D domains CYLINDERFLOW and AIRFOIL, by interpolating the ROI onto a 128×128
grid. We implemented the UNet architecture from Thürey et al. [31], and found that on both datasets,
MESHGRAPHNETS outperforms the UNet in terms of RMSE (Figure 4a). While the UNet was able
to make reasonable predictions on larger scales on AIRFOIL, it undersampled the important wake
region around the wingtip (Figure 3a), even while using four times more cells to span a region 16
times smaller than our method (Figure A.2). We observe similar behavior around the obstacle in
CYLINDERFLOW. Additionally, as seen in the video, the UNet tends to develop fluctuations during
rollout. This indicates that predictions over meshes presents advantages even in flat 2D domains.

5 Conclusion

MESHGRAPHNETS are a general-purpose mesh-based method which can accurately and efficiently
model a wide range of physical systems, generalizes well, and can be scaled up at inference time.
Our method may allow more efficient simulations than traditional simulators, and because it is
differentiable, it may be useful for design optimization or optimal control tasks. Variants tailored to
specific physical domains, with physics-based auxiliary loss terms, or energy-conserving integration
schemes have the potential to increase the performance further. This work represents an important
step forward in learnable simulation, and offers key advantages for modeling complex systems in
science and engineering.
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A Appendix

A.1 Dataset details

We evaluated our method on a variety of systems with different underlying PDEs, including cloth,
structural mechanics, incompressible and compressible fluids. We used ArcSim [21] for simulating
the cloth datasets, SU2 [10] for compressible flows, and COMSOL [8] for incompressible flow
and hyperelastic simulations. Each dataset consists of 1000 training, 100 validation and 100 test
trajectories, each containing 250-600 time steps.

Our structural mechanics experiments involve a hyper-elastic plate, deformed by a kinematic actuator,
simulated with a quasi-static simulator (DEFORMINGPLATE). Both actuator and plate are part of the
Lagrangian tetrahedral mesh, and are distinguished by a one-hot vector for the corresponding node
type ni. We encode the node quantities ui,xi,ni in the mesh, and predict the Lagrangian velocity
ẋi, which is integrated once to form the next position xt+1

i . As a second output, the model predicts
the von-Mises stress σi at each node.

Our cloth experiments involve a flag blowing in the wind (FLAGDYNAMIC) and a piece of cloth
interacting with a kinematic sphere (SPHEREDYNAMIC) on an adaptive triangular mesh, which
changes resolution at each time step. We encode inputs ui,xi,ni as above, but since this is a fully
dynamic second order system, we additionally provide h = 1 steps of history, by including the
velocity estimate ẋt

i = xt
i − xt−1

i as a node feature. The decoder outputs acceleration ẍi which is
integrated twice.

Our incompressible fluid experiments use the CYLINDERFLOW dataset, which simulates the flow
of water around a cylinder on a fixed 2D Eulerian mesh. The mesh contains the node quantities
ui,ni,wi, where wi is a sample of the momentum field at the mesh nodes. The network predicts
change in momentum ẇi, which is integrated once, and a direct prediction of the pressure field p.

Our compressible fluid experiments use the AIRFOIL dataset, which simulates the aerodynamics
around the cross-section of an airfoil wing. We model the evolution of momentum3 w and density ρ
fields, and hence the 2D Eulerian mesh encodes the quantities ui,ni,wi, ρi. We treat this as a first
order system and predict change in momentum ẇi and density ρ̇i, as well as pressure pi.

Below we list details for all of our datasets. “System" describes the underlying PDE: cloth, hyper-
elasticity or compressible and incompressible Navier-Stokes flow. Meshing can be either regular, i.e.
all edges having similar length, irregular, i.e. edge lengths vary strongly in different regions of the
mesh or dynamic, i.e. change at each step of the simulation trajectory. For Lagrangian systems, the
world edge radius rW is provided.

Dataset System Mesh type Meshing # nodes
(avg.) # steps rW

FLAGSIMPLE cloth triangle (3D) regular 1579 400 —
FLAGDYNAMIC cloth triangle (3D) dynamic 2767 250 0.05
SPHEREDYNAMIC cloth triangle (3D) dynamic 1373 500 0.05
DEFORMINGPLATE hyper-el. tetrahedral (3D) irregular 1271 400 0.03
CYLINDERFLOW incompr. NS triangle (2D) irregular 1885 600 —
AIRFOIL compr. NS triangle (2D) irregular 5233 600 —

Next, we list input encoding for mesh edges eMij , world edges eWij and nodes vi, as well as the
predicted output for each system.

3In visualizations, we show velocity, calculated as momentum w divided by density ρ.
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System Type
inputs
eMij

inputs
eWij

inputs
vi

outputs
pi

history
h

Cloth Lagrangian uij , |uij |,xij , |xij | xij , |xij | ni, (x
t
i−x

t−1
i ) ẍi 1

Hyper-El. Lagrangian uij , |uij |,xij , |xij | xij , |xij | ni ẋi, σi 0
Incomp. NS Eulerian uij , |uij | — ni,wi ẇi, pi 0
Compr. NS Eulerian uij , |uij | — ni,wi, ρi ẇi, ρ̇i, pi 0

All second-derivative output quantities (�̈) are integrated twice, while first derivative outputs (�̇)
are integrated once as described in Section 3; all other outputs are direct predictions, and are not
integrated. The one-hot node type vector ni allows the model to distinguish between normal and
kinematic nodes. Normal nodes are simulated, while kinematic either remain fixed in space (such
as the two nodes which keep the cloth from falling), or follow scripted motion (as the actuator in
DEFORMINGPLATE). For scripted kinematic nodes, we additionally provide the next-step world-
space velocity xt+1

i − xt
i as input; this allows the model to predict next-step positions which are

consistent with the movement of the actuator. In the variant of FLAGDYNAMIC with varying wind
speeds (generalization experiment in Section 4), the wind speed vector is appended too the node
features.

In the dynamically meshed datasets (FLAGDYNAMIC, SPHEREDYANMIC), the mesh changes between
steps, and there is no 1:1 correspondence between nodes. In this case, we interpolate dynamical
quantities from previous meshes M t−1, ...,M t−h as well as M t+1 into the current mesh M t using
barycentric interpolation in mesh-space, in order to provide history and targets for each node.

A.2 Additional model details

A.2.1 Architecture and training

The MLPs of the Encoder εM , εW , εV , the Processor fM , fW , fV , and Decoder δV are ReLU-
activated two-hidden-layer MLPs with layer and output size of 128, except for δV whose output size
matches the prediction pi. All MLPs outputs except δV are normalized by a LayerNorm. All input
and target features are normalized to zero-mean, unit variance, using dataset statistics.

For training, we only supervise on the next step in sequence; to make our model robust to rollouts
of hundreds of steps we use training noise (see Section A.2.2). Models are trained on a single v100
GPU with the Adam optimizer for 10M training steps, using an exponential learning rate decay from
10−4 to 10−6 over 5M steps.

A.2.2 Training noise

We used the same training noise strategy as in GNS [28] to make our model robust to rollouts of
hundreds of steps. We add random normal noise of zero mean and fixed variance to the most recent
value of the corresponding dynamical variable (Section A.2.3). When choosing how much noise to
add, we looked at the one-step model error (usually related to the standard deviation of the targets
in the dataset) and scanned the noise magnitude around that value on a logarithmic scale using two
values for each factor of 10. For the exact numbers for each dataset, see Table A.2.3.

In the cases where the dataset is modelled as a first-order system (all, except cloth domains); we
adjust the targets according to the noise, so that the model decoder produces an output that after
integration would have corrected the noise at the inputs. For example, in DEFORMINGPLATE, assume
the current position of a node is xti = 2, and x̃ti = 2.1 after adding noise. If the next position is
xt+1
i = 3, the target velocity for the decoder ẋi = 1 will be adjusted to ˜̇xi = 0.9, so that after

integration, the model output x̃t+1
i matches the next step xt+1

i effectively correcting for the added
noise, i.e. : x̃t+1

i = x̃ti + ˜̇xi = 3 ≡ xt+1
i .

In the second-order domains (cloth), the model decoder outputs acceleration ẍi from the input
position xti and velocity ẋti = xti − x

t−1
i (as in GNS). As with other systems, we add noise to the

position xti, which indirectly results on a noisy derivative ẋti estimate. In this case, due to the strong
dependency between position and velocity, it is impossible to adjust the targets to simultaneously
correct for noise in both values. For instance, assume xt−1i = 1.4, xti = 2, xt+1

i = 3, which
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implies ẋti = 0.6, ẋt+1
i = 1, and ground truth acceleration ẍi = 0.4. After adding 0.1 of noise

the inputs are x̃ti = 2.1 ⇒ ˜̇xti = 0.7. At this point, we could use a modified acceleration target of
˜̈xPi = 0.2, so that after integration, the next velocity is ˜̇xt+1

i = ˜̇xti + ˜̈xP = 0.9, and the next position
x̃t+1
i = x̃ti + ˜̇xt+1

i = 3 ≡ xt+1
i , effectively correcting for the noise added to the position. However,

note that in this case the predicted next step velocity ˜̇xt+1
i = 0.9 does not match the ground truth

ẋt+1
i = 1. Similarly, if we chose a modified target acceleration of ˜̈xVi = 0.3, the next step velocity

˜̇xt+1
i = 1 would match the ground truth, correcting the noise in velocity, but the same would not be

true for the next step position x̃t+1
i = 3.1. Empirically, we treated how to correct the noise for cloth

simulation as a hyperparameter γ ∈ [0, 1] which parametrizes a weighted average between the two
options: ˜̈xi = γ ˜̈xPi + (1− γ)˜̈xVi . Best performance was achieved with γ = 0.1.

Finally, when the model takes more than one step of history (h > 1) (e.g. in the ablation from
Figure 4d on FLAGDYNAMIC), the noise is added in a random walk manner with a per-step variance
such as the variance at the last step matches the target variance (in accordance with GNS [28]).

A.2.3 Hyper-parameters

Dataset Batch size Noise scale
FLAGSIMPLE 1 pos: 1e-3
FLAGDYNAMIC 1 pos: 3e-3
SPHEREDYNAMIC 1 pos: 1e-3
DEFORMINGPLATE 2 pos: 3e-3
CYLINDERFLOW 2 momentum: 2e-2
AIRFOIL 2 momentum: 1e1, density: 1e-2

Table 2: Training noise parameters and batch size.

A.3 Adaptive remeshing

For many problems, the optimal discretization will change over the course of a simultion run. Instead
of operating on a fixed mesh for the whole trajectory, we can adaptively change the mesh during the
simulation, to make sure important regions remain well-sampled.

Adaptive remeshing algorithms generally consist of two parts: identifying which regions of the
simulation domain need coarse or fine resolution, and adapting the nodes and their connections to this
target resolution. Only the first part requires domain knowledge of the type of physical system, which
usually comes in the form of heuristics. For instance, in cloth simulation, one common heuristic is the
refinement of areas with high curvature to ensure smooth bending dynamics, while in computational
fluid dynamics, it is common to refine around wall boundaries where high gradients of the velocity
field are expected.

In this work we adopt the sizing field methodology [21]. The sizing field tensor S(u) ∈ R2×2

specifies the desired local resolution by encoding the maximally allowed oriented, edge lengths in the
simulation mesh. An edge uij is valid iff uT

ijSi uij ≤ 1, otherwise it is too long, and needs to be
split4. Given the sizing field, a generic local remeshing algorithm can simply split all invalid edges
to refine the mesh, and collapse as many edges as possible, without creating new invalid edges, to
coarsen the mesh. We denote this remeshing process as M ′ = R(M,S).

A.3.1 Learned remeshing

To leverage the advantages in efficiency and accuracy of dynamic remeshing, we need to be able to
adapt the mesh at test time. Since remeshing requires domain knowledge, we would however need to
call the specific remesher used to generate the training data at each step during the model rollout,
reducing the benefits of learning the model. Instead, we learn a model of the sizing field (the only
domain-specific part of remeshing) using the same architecture as in Section 3 and train a decoder

4This formulation allows different maximal edge lengths depending on the direction. For e.g. a mesh bend
around a cylinder, it allows to specify shorter edge lengths in the bent dimension than along the cylinder.
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output pi to produce a sizing tensor for each node. At test time, for each time step we predict both
the next simulation state and the sizing field, and use a generic, domain-independent remesherR to
compute the adapted next-step mesh as M t+1 = R(M̂ t+1, Ŝt+1). In Section A.3.3 we describe the
simple generic remesher that we use for this purpose.

A.3.2 Model training

The sizing field model is trained with an L2 loss on the ground truth sizing field. If no sizing field
is available to train the sizing model, we can estimate it from a sequence of meshes. That is, for
two consecutive meshes M t, M t+1 we want to find the sizing field S that would have induced this
transition with a local remesher, i.e. M t+1 = R(M(t),S). To do this, we assume that the remesher
is near-optimal, that is, all resulting edges are valid, yet maximum-length under the metric S. For
each Si associated with the node i, this can be expressed as:

Si = argmax
∑
j∈Ni

uT
ijSi uij , s.t.∀j ∈ Ni : uT

ijSiuij ≤ 1 (2)

This problem corresponds to finding the minimum-area, zero-centred ellipse containing the points
uij , and can be solved efficiently using the MINIDISK algorithm [35].

A.3.3 A domain-invariant local remesher

A local remesher [21, 20, 25] changes the mesh by iteratively applying one of three fundamental
operations: splitting an edge to refine the mesh, collapsing an edge to coarsen it, and flipping an
edge to change orientation and to preserve a sensible aspect ratio of its elements. Edge splits create a
new node whose attributes (position, etc.), as well as the associated sizing tensor, are obtained by
averaging values of the two nodes forming the split edge. Collapsing removes a node from the mesh,
while edge flips leave nodes unaffected.

edge split edge �ip edge collapse

i j i j i j

k

l

Given the sizing field tensor Si at each node i, we can define the following conditions for performing
edge operations:

• An edge connecting node i and j should be split if it is invalid, i.e. uT
ijSijuij > 1 with the

averaged sizing tensor Sij = 1
2 (Si + Sj).

• An edge should be collapsed, if the collapsing operation does not create any new invalid
edges.

• An edge should be flipped if the an-isotropic Delaunay criterion [6]

(ujk × uik)uT
ilSAujl < uT

jkSAuik(uil × ujl) , SA =
1

4
(Si + Sj + Sk + Sl)

is satisfied. This optimizes the directional aspect ratio of the mesh elements.

We can now implement a simple local remesher by applying these operations in sequence. First, we
split all possible mesh edges to refine the mesh (in descending order of the metric uT

ijSijuij), then
flip all edges which should be flipped. Next, we collapse all edges we can collapse (in ascending
order of the metric uT

ijSijuij) to coarsen the mesh as much as possible, and finally again flip all
possible edges to improve mesh quality.

A.4 Additional results

A.4.1 Ablations

Learned remeshing We trained both a dynamics and a sizing field model to perform learned
dynamic remeshing during rollout on FLAGDYNAMIC and SPHEREDYNAMIC. We compare learned
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Figure A.1: (a) Remeshing with learned or estimated sizing fields produces accurate rollouts. (b)
Taking sufficient message passing steps is crucial for good performance, and limiting history size
increases accuracy by preventing overfitting.

remeshing variants with sizing model learned from labeled sizing data, as in Section A.3.1, as well as
from estimated targets, as in Section A.3.2. As a baseline, we ran our forward model on the ground
truth mesh sequence. As observed in the video, all learned remeshing variants are able to shift the
resolution to the new folds as they appear in the cloth, yield equally plausible dynamics, and are
on par5 in terms of quantitative performance (Figure A.1a). Thus, our learned remeshing method
provides the advantages of adaptive remeshing without requiring a domain-specific remesher in the
loop.

Key hyperparameters We tested several architecture variants and found our method is not very
sensitive to many choices, such as latent vector width, number of MLP layers and their sizes.
Nonetheless we identified two key parameters which influence performance (Figure A.1b). Increasing
the number of graph net blocks (message passing steps) generally improves performance, but it
incurs a higher computational cost. We found that a value of 15 provides a good efficiency/accuracy
trade-off for all the systems considered. Second, the model performs best given the shortest possible
history (h=1 to estimate ẋ in cloth experiments, h=0 otherwise), with any extra history leading to
overfitting. This differs from GNS [28], which used h ∈ 2...5 for best performance.

A.4.2 Baseline details

Baseline architectures were trained within our general training framework, sharing the same normal-
ization, noise and state-update strategies. We optimized the training hyper-parameters separately in
each case.

GCN baseline We re-implemented the base GCN method (without the super-resolution component)
from Belbute-Peres et al. [4]. To replicate the results, and ensure correctness of our implementation
of the baseline, we created a dataset AIRFOILSTEADY which matches the dataset studied in their
work. It uses the same solver and a similar setup as our dataset AIRFOIL, except that it has a narrower
range of angle of attack (−10◦...10◦ vs −25◦...25◦ in AIRFOIL). The biggest difference is that
the prediction task studied in their paper is not a dynamical simulation as our experiments, but a
steady-state prediction task. That is, instead of unrolling a dynamics model for hundreds of time
steps, this task consists of directly predicting the final steady-state momentum, density and pressure
fields, given only two scalars (Mach number m, angle of attack α) as well as the target mesh positions
ui— essentially learning a parametrized distribution.

In AIRFOILSTEADY, the GCN predictions are visually indistinguishable to the ground truth, and
qualitatively match the results reported in Belbute-Peres et al. [4] for their "interpolation regime"
experiments. We also trained our model in AIRFOILSTEADY, as a one-step direct prediction model
(without an integrator), with encoding like in AIRFOIL (see Section A.1), but where each node is
conditioned on the global Mach number m and angle of attack α), instead of density and momentum.
Again, results are visually indistinguishable from the ground truth (video), and our model outperforms
GCN in terms of RMSE (ours 0.116 vs GCN 0.159). This is remarkable, as our models’ spatial
equivariance bias works against this task of directly predicting a global field. This speaks of the
flexibility of our architecture, and indicates that it can be used for tasks beyond learning local physical
laws for which it was designed.

5Note that the comparison to ground truth requires interpolating to the ground truth mesh, incurring a small
interpolation penalty for learned remeshing models.
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Grid (CNN) baseline We re-implemented the UNet architecture of Thurey et al. [31] to exactly
match their open-sourced version of the code. We used a batch size of 10. The noise parameters
from Section A.2.3 are absolute noise scale on momentum 6e-2 for CYLINDERFLOW, and 1e1 on
momentum and 1.5e-2 on density in the AIRFOIL dataset.

A.4.3 Error metrics

Rollout RMSE is calculated as the root mean squared error of the position in the Lagrangian systems
and of the momentum in the Eulerian systems, taking the mean for all spatial coordinates, all mesh
nodes, all steps in each trajectory, and all 100 trajectories in the test dataset. The error bounds in
Table 1 and the error bars in Figure 4(a-c) indicate standard error of the RMSE across 100 trajectories.
Error bars in Figure 4(d) correspond to min/median/max performance across 3 seeds.

In FLAGSIMPLE and FLAGDYNAMIC, we observed decoherence after the first 50 steps (Figure 4b),
due to the chaotic nature of cloth simulation. Since the dynamics of these domains are stationary, we
use the rollout error in the first 50 steps of the trajectory for the comparison shown in the bar plots, as
a more discerning metric for result quality. However, the reported trends also hold when measured
over the whole trajectory.

In AIRFOIL, we compute the RMSE in a region of interest around the wing (Figure A.2 middle),
which corresponds to the region shown in figures and videos. For comparisons with grid-based
methods, we map the predictions on the grid to the ground truth mesh to compute the error.

(a) ground truth pressure (b) predicted pressure

Figure A.2: Top: Many of our datasets have highly irregular meshing, which allows us to predict
dynamics at several scales. With only 5k nodes, the dataset AIRFOIL spans a large region around the
wing (left: entire simulation domain), while still providing high resolution around the airfoil (middle:
ROI for visual comparison and RMSE computation), down to sub-millimeter details around the wing
tip (right). Bottom: Beside output quantities such as position or momentum, which are integrated and
fed back into the model as an input during rollout, we can also predict auxiliary output quantities,
such as pressure or stress. These quantities can be useful for further analyzing the dynamics of the
system. Here, we show a snapshot of auxiliary predictions of the pressure field in CYLINDERFLOW.
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