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Abstract

Modern design, control, and optimization often requires simulation of highly non-
linear models, leading to prohibitive computational costs. These costs can be
amortized by evaluating a cheap surrogate of the full model. Here we present a
general data-driven method, the continuous-time echo state network (CTESN), for
generating surrogates of nonlinear ordinary differential equations with dynamics
at widely separated timescales. We empirically demonstrate near-constant time
performance using our CTESNs on a physically motivated scalable model of a
heating system whose full execution time increases exponentially, while main-
taining relative error of within 0.2 %. We also show that our model captures fast
transients as well as slow dynamics effectively, while other techniques such as
physics informed neural networks have difficulties trying to train and predict the
highly nonlinear behavior of these models.

1 Introduction

Stiff nonlinear systems of ordinary differential equations, i.e., systems that are ill-conditioned in
a computational sense, are widely prevalent throughout science and engineering [30, 26] and are
characterized by dynamics with widely separated time scales. These systems require highly stable
numerical methods to use large step-sizes reliably [8], and also tend to be computationally expensive
to solve. Even with state-of-the-art simulation techniques, design, control, and optimisation of
these systems remains intractable in many realistic engineering applications [1]. To address these
challenges, we develop a data-driven technique, the continuous-time echo state network (CTESN),
to obtain an approximation to the system (called a "surrogate") whose forward simulation time is
relatively inexpensive while maintaining reasonable accuracy on these highly ill-conditioned models.

A popular class of methods to produce surrogates is projection based model order reduction, such as
the proper orthogonal decomposition (POD) [1]. This method computes "snapshots" of the trajectory
and uses the singular value decomposition of the linearization in order to construct a basis of a
subspace of the snapshot space, and the model is remade with a change of basis. However, if the
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system is very nonlinear, the computational complexity of this linearization-based reduced model can
be almost as high as for the original model. One way to overcome this difficulty is through empirical
interpolation methods [18]. Another recent method seeks to perform variable transformations to
change the dynamics of the system before performing model order reduction on the transformed
system [21]. However, such transformations could be system specific and it is not known whether
such transformations exist for every system. Other methods to produce surrogates generally utilize
the structural phonomena known about highly regular systems like partial differential equation
discretizations [7].

Modern large-scale engineering models generated by symbolic systems such as Modelica [17, 31]
and ModelingToolkit1 can be quite heterogeneous and nonlinear without much repeated structure.
Without the structure inherent in problems like partial differential equations, these problem-specific
automated variable transformations and changes of bases could be hard to implement.

Numerical stiffness [28] and multiscale dynamics represent an additional challenge. While slow
processes are relatively easy to capture, fast transients are not. Some model-order reduction techniques
simply eliminate the fast modes and capture the slow modes accurately, such as the computational
singular perturbation (CSP) method [10], which results in a non-stiff system. However, many systems
(e.g., chemical reaction systems) require transient activations to properly arrive at the overarching
dynamics. In this case, accurate representation of the fast dynamics can be required for appropriately
reconstructing the constituent behavior [11]. We will demonstrate how a new surrogate technique,
the CTESN, can overcome these difficulties and accurately capture highly nonlinear heterogeneous
stiff systems in this paper.

2 Continuous-Time Echo State Networks

Echo State Networks (ESNs) are a framework for computation derived from recurrent neural network
theory that maps signals into higher dimensional computational spaces through the dynamics of a
fixed, non-linear system called a "reservoir". They are usually defined as high-dimensional discrete
dynamical systems with an output readout layer which is then fit to an input signal [19]. While ESNs
have traditionally been used as a stand-in for recurrent neural networks [14, 16], recent work has
applied ESNs to learning chaotic systems [3, 4], nonlinear systems identification [13], bio-signal
processing [15], and robot control [20],

Here we describe a new variant of ESNs which we call continuous-time echo state networks (CTESNs).
Let N be the dimension of our model, and let P be a Cartesian space of parameters under which the
model is expected to operate. The CTESN of dimension NR is defined as

r′ = tanh(Ar +Winx(p
∗, t)) (1)

x(t) = Woutr(t), (2)

where A is a fixed sparse random graph of dimension NR ×NR and Win is a fixed random dense
matrix of dimensions NR ×N . Given these fixed values, the readout matrix Wout is the only trained
portion of this network and is obtained through a least squares fit against the original timeseries.

To obtain a surrogate that predicts the dynamics at new physical parameters, the reservoir projection
Wout is fit against many solutions at p1, . . . , pn, where n is the number of training data points
sampled from the parameter space. Using these fits, an interpolating function Wout(p) between the
matrices can be trained. For the examples in this paper, we have sampled the high-dimensional spaces
using a Sobol low-discrepancy sequence [27] and interpolated the Wout using a radial basis function
provided by Surrogates.jl 2. A prediction x̂(t) for a parameter vector p̂ that is not in the training set
would simply be:

x̂(t) = Wout(p̂)r(t) (3)

A strong advantage of our method is its ease of implementation and ease of training. Global L2

fitting via stabilized methods like SVD are robust to ill-conditioning, alleviating many of the issues
encountered when attempting to build neural surrogates of such equations. Also note that in this
particular case, the readout matrix is fit against the same reservoir time series. Prediction does not
need to simulate the reservoir, providing an extra acceleration.

1https://github.com/SciML/ModelingToolkit.jl/
2https://github.com/SciML/Surrogates.jl
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Figure 1: Training performance on the the Robertson equations. We see that our network is able
to reproduce the dynamics, capturing the slow (second row) and fast transients (third row) with low
error

3 Case Studies

3.1 Robertson Equations and High Stiffness

We first consider Robertson’s chemical reaction equations:

ẏ1 = −0.04y1 + 104y2 · y3 (4)

ẏ2 = 0.04y1 − 104y2 · y3 − 3 · 107y22 (5)

ẏ3 = 3 · 107y22 (6)

where y1, y2, y3 are the concentration of three chemical reaction species. This system has widely
separated time constants (0.04, 104, 3 · 107), is well known to be very stiff [9, 25, 24] and is used as
an example to evaluate integrators of stiff ODEs [12]. Finding an accurate surrogate for this system
is difficult because it needs to capture both the stable slow reacting system and the fast transients.
Additionally, the surrogate needs to be consistent with this system’s implicit physical constraints,
such as the conservation of matter (y1 + y2 + y3 = 1) and positivity of the variables (yi > 0), in
order to provide a stable solution. Figure 1 shows that training our CTESN yields good performance
for both the larger and smaller quantities while accurately capturing the fast transients and respecting
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Figure 2: TEST performance on scalable heating system with 10 rooms. When tested with
parameters it has not seen in training, our surrogate is able to reproduce the behaviour of the system
to within 0.01% error.

physical constraints. Thus, for any set of parameters, if we know the approximate reading out matrix
for the reservoir, we can achieve accurate predictions with < 1% error.

To further demonstrate the difficulty of this equation, we used the NeuralPDE.jl 3 physics-informed
neural network (PINN) training framework to attempt to solve these equations using PINNs. PINNs
are a recent data-driven method to obtain surrogates for partial differential equations by directly
training the neural network to be the solution of the differential equation [23]. This software has been
verified to automatically accurately solve many of the equations expounded upon in [23], including
nonlinear partial equations like the Burger’s equation, demonstrating its accuracy and the robustness
of the implementation. However, when applied to Equation 4, the PINN training infrastructure was
unable to adequately train neural networks to the solution the equation, never lowering below a
relative error of 100% due to difficulties in capturing the short transient. The reason for the difficulty
can be attributed to recently identified results in gradient pathologies in the training arising from
stiffness [29]. With a highly ill-conditioned Hessian in the training process due to the stiffness of
the equation, it would take an intractably long time to train a PINN surrogate on this problem with
current methods. We note that in general, stiff systems of this form may be hard to capture by neural
networks directly as they show a bias towards low frequency functions [22].

3https://github.com/SciML/NeuralPDE.jl
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Figure 3: Reliability of surrogate through parameter space. We sampled our grid at over 500
grid points and plotted a heatmap of test error through our parameter space. We find our surrogate
performs reliably even at the border of our space with error within 0.1%

20 40 60 80 100
Number of rooms N

0.0

2.5

5.0

7.5

10.0

12.5

Ex
ec

ut
io

n 
tim

e 
(s

ec
)

Scaling performance of model vs surrogate
stiff model
surrogate

Figure 4: Scaling performance of surrogate on heating system. Our surrogate’s runtime grows in
near-constant time while the benchmark problem shows exponential growth in runtime.
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3.2 Stiffly-Aware Surrogates of HVAC Systems

Our second test problem is a simplified, lumped-parameter model of a heating system with a central
heater supplying heat to several rooms through a distribution network. The resulting system of
equations is very stiff and has localized activity. This provides a useful test for our method, exhibiting
stiff dynamics, and is a useful scalable benchmark used in the engineering community [2].

The size of the heating system is scaled by a parameter N which refers to the number of users/rooms.
This produces a system with 2N + 1 equations. This “scalability” lets us test how our method scales.
To train the surrogate, we define a parameter space P under which we expect it to operate. First, we
assume set point temperature of each room to be between 17◦C to 23◦C, which is what we expect
users to set their room temperature to. Each room is warmed by a heat conducting fluid, whose set
point is likely between 65◦C and 75◦C. Thus the parameter space over which we expect our surrogate
to work is the rectangular space denoted by [17◦C, 23◦C]× [65◦C, 75◦C]. Figure 2 demonstrates
that the training technique is accurately able to find matrices Wout which capture the stiff system
within 0.01% error. Figure 3 demonstrates that the interpolated Wout(p) is able to adequately capture
the dynamics throughout the trained parameter space. Lastly, Figure 4 demonstrates the almost O(1)
cost of the surrogate evaluation, where at the high end the surrogate accelerates a 201 dimensional
stiff ODE system by over 15x.

4 Discussion, Conclusion & Future Work

We present CTESNs, a data-driven method for generating surrogates of nonlinear ordinary differential
equations with dynamics at widely separated timescales. Our method maintains accuracy for different
parameters in a chosen parameter space, and shows favourable scaling with system size.

Known limitations: Our method utilizes the continuous nature of differential equation solutions.
Hybrid dynamical systems, such as those with event handling [5], can introduce discontinuities into
the system which will not be adequately captured by the current method. Further extensions to
the method will be required to handle both derivative discontinuities and events present in Filippov
dynamical systems [6].

Reliability: In this work we have not proven any error bounds for our method, and while the empirical
results are promising, some formal intuition on its reliability is a possible area of further study. In
addition, more testing needs to be done on CTESNs under controls and as components within larger
systems.

Performance: While we show promising scaling results, we have not shown tight bounds on
execution time. For the surrogate on the heating system, we do not need solve the reservoir ODE
every time we predict a time series because the surrogate has been trained for various parameters
against the same reservoir. In other words, the reservoir ODE itself has no dependence on the
parameter space (only the readout matrix does). Hence, we can simply return the solution to the
reservoir ODE after training and just use it directly for prediction. However, this approach is memory-
intensive: the reservoir time series of dimensions and the dense readout matrices of dimensions
N ×NR are both large. In addition, for CTESN formulations that take in input forcing functions or
have some dependence on parameters, the reservoir would need to be simulated every single time a
prediction is made. Future work will comment on other such formulations. We do note in passing that
simulating the reservoir is quite fast in practice as it is non-stiff, and thus techniques which regenerate
reservoirs on demand will likely not incur a major run time performance cost.

Opportunities: Since CTESNs are largely data driven (the physics dependence is largely driven by
using a candidate solution as "input" to the reservoir), an opportunity exists to train surrogates of
black-box systems. Further opportunities could explore utilizing more structure within equations for
building a more robust CTESN or decrease the necessary size of the reservoir.

Broader Impact

This section does not apply to our work.
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