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Abstract

In this work, we present a learning based approach to analog circuit design, where
the goal is to optimize circuit performance subject to certain design constraints. One
of the aspects that makes this problem challenging to optimize, is that measuring the
performance of candidate configurations with simulation can be computationally
expensive, particularly in the post-layout design. Additionally, the large number of
design constraints and the interaction between the relevant quantities makes the
problem complex. Therefore, to better facilitate supporting the human designers, it
is desirable to gain knowledge about the whole space of feasible solutions. In order
to tackle these challenges, we take inspiration from model-based reinforcement
learning and propose a method with two key properties. First, it learns a reward
model, i.e., surrogate model of the performance approximated by neural networks,
to reduce the required number of simulation. Second, it uses a stochastic policy
generator to explore the diverse solution space satisfying constraints. Together we
combine these in a Dyna-style optimization framework, which we call DynaOpt,
and empirically evaluate the performance on a circuit benchmark of a two-stage
operational amplifier. The results show that, compared to the model-free method
applied with 20,000 circuit simulations to train the policy, DynaOpt achieves even
much better performance by learning from scratch with only 500 simulations.

1 Introduction

Although analog circuits are present as many different functional blocks in most integrated circuit
(IC) chips nowadays, analog circuit design has been increasingly difficult for several reasons, e.g.,
growing complexity in circuit topology, tight tradeoffs between different performance metrics and so
on [1]. Unlike digital circuit design that is aided by well standardized design flow with electronic
design automation (EDA) tools [2], analog design requires a high level of application-specific
customization and still resorts to domain knowledge by experienced designers. Manual optimization
based on exhaustive search with simulation is a notoriously time consuming and labor intensive
task. Particularly the post-layout design, in which the design objectives are verified after the layout
creation, is much more challenging because it demands additional computationally costly simulations
using EDA tools to reflect the layout parasitics to the circuit accurately. In addition, the circuit
problem can have multiple different solutions which are distributed diversely in the search space. It
can serve as crucial information fed back to designers such that they better understand the circuit
operation under constraints. Unfortunately this generalization capability is mostly missing in prior
methods. Automated analog design has drawn increasing attention to take human experts out of the
optimization loop. Traditionally, population based methods (e.g., genetic algorithm [3] and particle
swarm optimization [4]), and Bayesian optimization [5, 6] have been used. However, the former
suffers from low sample efficiency and lacks reproducibility. The latter is sample efficient, but scales
poorly in high dimensional problems.
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In this work, we introduce a novel reinforcement learning (RL) [7] based optimization framework,
DynaOpt, which not only learns the general structure of solution space but also ensures high sample
efficiency based on a Dyna-style algorithm [8]. The contributions of this paper are as follows: First,
the policy is trained through a noise source and learns a whole distribution of feasible solutions.
Second, the reward is modeled using neural networks, which allows us to leverage model-based
RL. Third, the post-layout circuit is optimized based on model-based RL, together with transfer
learning from the schematic based design, and we achieves 300× higher sample efficiency than
model-free approach. Finally, DynaOpt is implemented by taking advantage of both the model-free
and model-baed methods to maximize the learning process from scratch. Even though we focus
on analog circuit design, the methodology is expected to be readily applicable to a broad range of
simulation based optimization problems in engineering.

2 Background

2.1 Circuit optimization problem

The objective of analog circuit design is to search over optimal circuit parameters (e.g., width and
length of transistors, resistance and capacitance) that meet design constraints imposed on performance
metrics (e.g., power, noise and voltage gain) given a circuit topology [1]. The performance metrics
are measured by running a circuit simulator with input of candidate parameters, and this process
repeats until all the required inequality constraints, which are application specific, are satisfied (e.g.,
voltage gain > 100 V/V and power consumption < 1mW).

The circuit optimization can be formulated as a RL problem. Generation of circuit parameters
corresponds to the action, and the reward is determined by an estimate of circuit performance. The
agent iterates sequential decision process by interacting with the environment (i.e., circuit simulation),
and improves the policy to maximize the expected reward. We define the reward R as a weighted
sum of normalized performance metrics under measurement.
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where the measured metricmi should be either larger than the lower boundmLOW
i or smaller than the

upper bound mUP
i , and wi denotes the weighting factor which is one in this work. Each normalized

metric ri is set to be within a range of [−1, 0], which also helps regression of the reward model
discussed in Section 3. The reward starts from the negative and reaches zero once all hard constraints
are satisfied. The other minimization or maximization objectives can be also included in Equation 1
similarly without clipping values to be negative.

2.2 Related works

Recent rapid progress in machine learning has accelerated analog design automation with various
learning based methods. For example, [9] combines evolutionary algorithms with a neural network
discriminator to boost the sample efficiency. Recent works [10, 11] frame the optimization problem
as a Markov decision process (MDP) and apply the RL method to learn the optimal policy. RL
is also used together with graph convolutional neural networks to learn about the circuit topology
representation [12]. However, the aforementioned RL based approaches all rely on model-free
algorithms which require to run the circuit simulation for every training sample to evaluate the
reward, and thus the sample efficiency inevitably degrades as the circuit complexity increases. In
addition, [11] attempts to learn about the design space through a sparse subsampling technique
(i.e., randomizing target specifications in a certain range), but it may not guarantee convergence to
generalized solutions.

3 DynaOpt: reinforcement learning based optimization

In this section, we present a RL based optimization framework which can tackle both the sample
efficiency and the solution generalization. The policy generator and the reward model are discussed

2



Softmax
classifier

Mload size
[1,2,…,100]

Softmax
classifier

••• Softmax
classifier

M_in size
[1,2,…,100]

Cc value
[1,2,…,100]

N(0, 1) N(0, 1) N(0, 1)

Figure 1: Left: Policy generator with input Gaussian noise, Right: Schematic of two-stage operational
amplifier [11].

in detail as important building blocks in the proposed architecture, and it is followed by a description
of Dyna-style leaning based algorithm.

3.1 Policy generator

In this paper, we try to address the circuit optimization problem with RL. Even though the problem
has no time component, RL can still be promising. For instance, RL has recently been used for the
problem of network architecture search (NAS) with good results [13]. Our initial approach was to
mirror their method: we used the recurrent neural network (RNN) controller where each RNN cell
generates one circuit parameter at every time step, and it is then fed as input to the next cell at the
next time step. However, our experiments indicated that the cell connections over time steps do not
help for the problem (see more details in Supplementary Material).

Therefore, we take a much simpler approach as illustrated in Figure 1 (left): each parameter is
represented by its own distribution. Together these form a policy that is a product distribution:
π(a|z) = π1(a1|z1) · . . . ·πT (aT |zT ), where a = 〈a1, . . . , aT 〉 is a specification of all T parameters.
To allow flexible distributions for each parameter, we draw inspiration from generative adversarial
networks (GANs) [14]and use a feedforward network which is fed by a Gaussian noise input such
that it can ultimately learn a distribution of optimal actions. For implementation, this policy generator
is trained using the REINFORCE policy gradient algorithm [15] with baseline, and the entropy bonus
is added to encourage exploration [16].

3.2 Reward model

The reward evaluation with simulation is an expensive process in analog circuit design, and here
we investigate if it can be replaced by a reward model built with learnable neural networks. The
reward model is simply a regression model predicting a scalar valued reward as a function of actions.
Alternately, it can be implemented to output each performance metric separately, from which the
reward is calculated in the final stage. The neural network is designed to have different heads and
one shared backbone like a multi-task regressor. It can serve to be better explainable to designers,
but costs slightly increased complexity in the neural network. Furthermore, since the environment is
fully represented by the reward model only, model-based RL can be directly applied to the problem
without incorporating any other models. In this regard, the post-layout deign can greatly benefit from
model-baed RL, as discussed in detail below.

Transfer learning Design lifecycle of analog circuits generally involves two circuit optimization
tasks. While the first preliminary design considers the schematic only, the post-layout design requires
several costly EDA tools to take into account the layout effect, and it poses a major bottleneck. The
overall design efficiency can be significantly improved by transferring knowledge between the two,
based on the model-based approach. More specifically, it starts with optimizing the first design with
model-free RL. The training data of action-reward pairs are reused to build up the reward model
for the first design. Then the reward model is tweaked for the post-layout design with a minimal
number of simulation based training samples. Finally the post-layout design is optimized based on
full model-based RL.
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3.3 Dyna-style optimization

In case that prior knowledge related to the problem is unavailable, model-based optimization can be
implemented in a different way such that the policy generator and the reward model are improved
alternately from scratch. At each training cycle, a small batch of action-reward pairs sampled from the
policy and evaluated with simulation, i.e., real experience, is accumulated to the sample buffer which
is in turn used to train the reward model. It is followed by the policy improvement with this updated
reward model. This iteration continues until the optimal policy is reached. Moreover, since real
experience is sampled from the on-policy distribution, the reward model can be effectively updated
with much less training samples by focusing on the interested action space defined by the current
policy [7]. Due to this advantage, the algorithm can be implemented in several different ways such
that, for instance, the reward model is trained without using the off-policy sample buffer.

To further enhance the sample efficiency, a unified Dyna-style optimization scheme is proposed
by intermixing both the model-free and model-based RL methods [8]. The algorithm needs one
modification from the model-based one such that real experience is used to improve the policy by
model-free RL as well as the reward model. The details are described in Algorithm 1.

Algorithm 1 Proposed DynOpt method.
Initialize policy generator πθ (a| z), reward model ρφ (a) and sample buffer B
For number of training cycles do
. For i = 1 : Ndirect do // Loop for model-free RL
. . Sample z ∼ N (0,1)
. . Sample a vector of T actions a ∼ πθ ( ·| z) // T : number of circuit parameters
. . Estimate reward R using circuit simulation with a
. . Update policy parameters θ based on REINFORCE rule
. . Store action-reward pair (a, R) in B
. End
. Update reward model parameters φ by regression on B
. For i = 1 : Nmodel do // Loop for model-based RL
. . Sample z ∼ N (0,1)
. . Sample a ∼ πθ ( ·| z)
. . Estimate R using reward model ρφ (a)
. . Update θ based on REINFORCE rule
. End
End

4 Experiments

An experiment is carried out on the same design problem of a two-stage operational amplifier as found
in [11]. The circuit schematic is shown in Figure 1 (right). The problem has 7 circuit parameters
(6 transistor sizes, 1 capacitance) to optimize and 4 design constraints (voltage gain > 200 V/V,
unity gain bandwidth > 1 MHz, phase margin > 60 degree, bias current < 10 mA) to satisfy. Each
discretized circuit parameter can be selected from 100 possible values, and so the action space size is
1014 in total. The circuit is evaluated using 45nm BSIM model with NGSPICE simulator [17].

4.1 Analysis of policy generator

We train the policy generator in Figure 1 (left) based on the policy gradient method, using random
noise input from the normal distribution N (0, 1) for generalization. Figure 2 (left) shows a noisy
reward trajectory to learn about the action space from the noise input, and the mean reward converges
to zero around 20,000 steps1 as the policy improves. For verification, this trained policy generator is
evaluated with 200 simulation based samples given by the same noise source as found in Figure 2
(center). Figure 2 (right) shows the reward distribution of the corresponding actions generated by
the trained policy and evaluated by simulation. The generated actions are distributed mostly near a

1Because a minibatch size of one is used throughout this work, the training step in model-free algorithms is
equal to the number of simulation.
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Figure 2: Left: Mean reward curve in policy training, Center: Distribution of Gaussian noise input to
policy generator, Right: Simulation based evaluated reward distribution of generated actions from
200 noise samples.

reward of zero, and eventually the policy generator can learn to map the input noise to a distribution
of optimal actions solving the problem.

4.2 Transfer learning for post-layout design

In the post-layout design, we simply assume that the layout effect introduces additional parasitic
capacitance of 200 pF between all nodes to the circuit in Figure 1 (right). This value is likely to
be much larger than actual ones like some worse-case scenario, and accurate assessment of the
layout parasitics may not be critical here for proof-of-principle experiment. Figures 3 (left) shows
the model-based optimization result. Initially the policy trained in the first schematic-only design
as described above, generates low-quality actions unsuitable for this post-layout circuit. Only 100
simulation based training samples are used to update the reward model by transfer learning. The
reward model is configured to have 3 hidden layers of size 16 with ReLU activation except the output
layer. The policy is then updated from the pretrained policy and optimized for the post-layout circuit,
based on model-based RL without involving simulation at all. The reward distribution is obtained by
evaluating the trained policy with 200 input noise samples as before. For comparison, model-free
optimization is also carried out by learning from scratch with 30,000 simulations, and the result is
shown in Figure 3 (right). The model-based approach achieves comparable performance, with 300×
improved sample efficiency.

4.3 DynaOpt based circuit optimization

DynaOpt is also applied to the problem in Figure 1 (right). The training is repeated over 5 cycles, and
each cycle uses 100 simulations to update both the policy generator and the reward model, based on
Dyna-style RL, as described in Algorithm 1. Figure 4 shows how the reward distribution evolves
as the policy improves, when the agent starts learning without prior knowledge. As compared to
Figure 2 (right) where the the model-free method is applied with 20,000 simulations, DynaOpt yields
comparable results only after about 3 training cycles (300 simulations), and learns nearly optimal
policy with merely 500 simulations.

Figure 3: Post-layout circuit optimization: simulation based evaluated reward distribution obtained
with model-based RL optimization and transfer learning with 100 training samples (left) and model-
free RL optimization results with 30,000 training samples (right).
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Figure 4: DynaOpt based optimization of two-stage operational amplifier: evolution of simulation
based reward distributions measured at each training cycle (100 samples) and final evaluation (200
samples).

5 Conclusions

We propose DynaOpt for analog circuit design, which is a Dyna-style RL based optimization
framework. It is built by intermixing both the model-free and model-based methods with two key
components - the stochastic policy generator and the reward model. The policy generator learns to
map the random noise input to the on-policy distribution of actions which eventaully move toward
solutions as the policy improves, and the reward model allows to leverage sample efficient model-
based RL by replacing expensive simulation with it. By putting them together, DynaOpt achieves
both generalization capability and high sample efficiency, which is difficult with prior methods.
Application to the design of a two-stage operational amplifier is demonstrated based on various
implementation of the methodology such as model-based learning with knowledge transfer and
Dyna-style learning, which all outperform the model-free approach with promising results.
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6 Supplementary Material

Due to similarity to the NAS problem, the RL based approach in [13] is directly applicable to the
circuit optimization as long as the action space is discretized. As shown in Figure 5, the RNN
controller is used as the policy network to sequentially sample a list of actions, i.e., circuit parameters,
based on the current policy. The action generated in each RNN cell is fed to the next cell in an
autoregressive way. After collecting the final action, the agent receives the corresponding reward by
measuring the circuit performance with simulation. We first apply the RNN controller to the circuit
problem in Figure 1 (right), and Figure 6 (left) shows the reward over training steps. The problem is
solved, i.e., approaching a reward of zero, in < 500 steps, with producing one random combination
of optimal parameters. Different orders of parameters assigned to RNN cells are tested, and they
produce all similar learning curves without any preferred orders observed.

However, the controller still works similarly even when the cells are disconnected by deactivating the
RNN (i.e., setting zero to all inputs and hidden states) and cutting off the autoregressive connection,
as shown in Figure 6 (right). Each cell works as an independent learner like treating the circuit
parameters as independent variables, and thus the policy network for the circuit optimization can be
greatly simplified to the scheme presented in Figure 1 (left).
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Figure 5: RNN controller for circuit optimization.

Figure 6: Left: Reward curve obtained by directly applying the RNN controller, Right: Reward curve
obtained by disconnecting cells in the controller.
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