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Abstract

The field of DNA nanotechnology has made it possible to assemble, with high
yields, different structures that have actionable properties. For example, researchers
have created components that can be actuated, used to sense (e.g., changes in pH),
or to store and release loads. An exciting next step is to combine these components
into multifunctional nanorobots that could, potentially, perform complex tasks
like swimming to a target location in the human body, detect an adverse reaction
and then release a drug load to stop it. However, as we start to assemble more
complex nanorobots, the yield of the desired nanorobot begins to decrease as the
number of possible component combinations increases. Therefore, the ultimate
goal of this work is to develop a predictive model to maximize yield. However,
training predictive models typically requires a large dataset. For the nanorobots
we are interested in assembling, this will be difficult to collect. This is because
high-fidelity data, which allows us to exactly characterize the shape and size of
individual structures, is very time-consuming to collect, whereas low-fidelity data is
readily available but only captures bulk statistics for different processes. Therefore,
this work combines low- and high-fidelity data to train a generative model using
a two-step process. We first use a relatively small, high-fidelity dataset to train a
generative model. Then at run time, the model takes low-fidelity data and uses it to
approximate the high-fidelity content. We do this by biasing the model towards
samples with specific properties as measured by low-fidelity data. In this work we
bias our distribution towards a desired node degree of a graphical model that we
take as a surrogate representation of the nanorobots that this work will ultimately
focus on. We have not yet accumulated a high-fidelity dataset of nanorobots, so we
leverage the MolGAN architecture [1] and the QM9 small molecule dataset [2-3]
to demonstrate our approach.

1 Introduction

The field of DNA nanotechnology has generated a rich array of nanoscale designs for applications such
as moving through fluids [4], sensing changes in pH [5-6] and storing drug loads [7]. We hypothesize
that we could combine components with individual capabilities into multifunctional nanorobots to
perform complex tasks, potentially, like swimming through the human body to a target site, detecting
an adverse reaction, and then releasing a large drug load to stop the reaction from continuing. We
could build these nanorobots by combining multiple species of functional components in solution
under specific manufacturing conditions, such as temperature and ion concentration. However,
research suggests that as we build more complex nanorobots, the yields will decrease [8]. The
engineering challenge here is to learn to optimize the manufacturing conditions to maximize yield,
and we can accelerate this learning process with a predictive model.

Workshop on machine learning for engineering modeling, simulation and design @ NeurIPS 2020



Figure 1: An overview of our two-step training approach that uses high-fidelity (AFM) data and
low-fidelity (spectrophotometry data) to train a GAN with an additional reward network. (Credit to
Ying Liu for AFM image.)

However, training predictive models typically requires a large dataset, which will be difficult to collect
in this application. This is because the dimensions of nanoscale objects are below the diffraction limit
of light, so we must use time-consuming techniques like superresolution microscopy, atomic force
microscopy (AFM) or transmission electron microscopy (TEM) to image the nanorobots directly.
The alternative to using these high-fidelity methods is to use low-fidelity characterization techniques
like spectrophotometry. Spectrophotometry uses light to characterize sample composition and can
be used to detect the number of unhybridized DNA strands in solution, which can be correlated to
how many connected neighbors a component has. If we represent the structure of a nanorobot as a
graph, we may be able to relate the spectrophotometry data to the average node degree of that graph.
Therefore, while spectrophotometry data is faster to collect than AFM or TEM, it can only tell us how
many connections there are between components in a nanorobot, but not the types of components
present in the nanorobot, nor its overall topology. Note that spectrophotometry techniques are not
the only low-fidelity tools available to us - we could also use gel electrophoresis or fluorescence
microscopy, among others. In future, we will conduct experiments to understand what characteristics
we can reliably observe about our nanorobots from low-fidelity data, and we will use those metrics to
bias our model’s output using the same approach as the one described here.

We propose to bridge the gap between time-consuming imaging techniques and fast, yet low-fidelity
characterizations by combining them to train a generative model in a two-step process. We support
the belief that generative models are an appropriate choice because they can learn to represent a distri-
bution and make novel predictions by biasing the learned distribution towards desired characteristics.
Our two-step training process, as shown in Figure 1, will first train the model on a relatively small
dataset of high-fidelity data. (Based on work in [1], we estimate we will only need a few thousand
example nanorobots.) Once the model has learned to approximate the distribution of nanorobot
shapes, the second step will be to collect only low-fidelity data for subsequent experiments. This data
will then be used to bias the distribution towards nanorobots with a desired average node degree.

While there are many examples of generative models that incorporate a mechanism for adding bias to
their outputs [1, 9-14], we selected the MolGAN architecture presented by De Cao and Kipf for our
preliminary experiments [1]. The MolGAN framework was designed to learn a distribution of small
molecules (maximum 9 atoms) from the QM9 dataset [2-3], represented as graphs. MolGAN linearly
combines the typical loss function for the generator with a reinforcement learning (RL) objective in
order to bias the generator to output novel molecules that meet certain criteria, such as solubility or
druglikeliness (a term coined in [15]) [1].

We present our preliminary implementation of a generative model, as inspired by MolGAN, using a
novel reward objective. We compare our model’s performance to the original MolGAN using the
same QM9 dataset employed by De Cao and Kipf [1]. Note that we use the QM9 dataset [2-3] as
a surrogate for our DNA nanorobots because we do not yet have a dataset of nanorobot structures.
Since we intend to represent our nanorobots as graphs, the QM9 dataset is a good surrogate because
it also uses a graph-based representation. This allows us to test our novel reward objective, which
is designed to bias the generator towards returning graphs with a desired average node degree. In
this work we explore two aspects of the model’s performance that will be of particular importance
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moving forwards: (1) how well we can bias our model’s output and (2) how diverse the generated
samples are when we are biasing the model.

2 Key Concepts from Prior Work

In this section, we present key concepts from the literature that we used in our implementation. First,
we define a graph as a set of nodes, V , connected by a set of edges, E which together represent a
graph, G = (V,E). Following De Cao and Kipf, we can encode information about the nodes and
edges in one-hot tensors. For example, the nodes are described by a feature matrix, X , which has
size N × T , where N is the number of nodes in the graph, and T is the number of different types of
nodes. Similarly, the edges can be described by an adjacency tensor, A, of size N ×N ×B, where
B is the number of different edge types [1].

2.1 Wasserstein Generative Adversarial Networks with Gradient Penalty (WGAN-GP)

The MolGAN architecture uses a variant on the original GAN [16] that minimizes the Wasserstein-
1 distance instead of the Kullbeck-Leibler divergence; this variant is called a WGAN [17]. The
advantage of the WGAN is that it is less prone to mode collapse than the original GAN because the
Wasserstein-1 distance function is much less susceptible to the vanishing gradient problem [17].

The Wasserstein-1 distance function is intractable to compute, so it is approximated using the
Kantorovich-Rubinstein duality [17-18]. This approximation uses a K-Lipschitz function that must,
by definition, be bounded. Gulrajani et al. suggested using a gradient penalty to apply this constraint,
giving rise to the WGAN-GP [19]. This WGAN-GP model is used in MolGAN, and allows us to
define a new loss function for the discriminator as follows [1]:

L
(
x(i), Gθ(z(i));φ

)
= −Dφ(x(i)) +Dφ(Gθ(z(i))) + α

(
||∇x̂(i)Dφ(x̂(i))|| − 1

)2

(1)

Where Dφ is the discriminator, Gθ is the generator, and x̂(i) is a linear combination of real and fake
samples, x̂(i) = εx(i) + (1 − ε)Gθ(z(i)). The random seed is z(i) ∼ N (0, 1) and ε ∼ U(0, 1) [1].
We set α = 10 following Gulrajani et al.’s recommendation [19].

2.2 Relational Graph Convolutional Networks (R-GCN)

We use graph convolution in both the discriminator and reward networks as a means of finding
salient graph features that help each network to categorize graphs as real or fake (in the case of the
discriminator) and to attach the correct score to each graph for meeting the design criteria (in the
case of the reward function). In MolGAN, De Cao and Kipf use a variant of the Relational Graph
Convolutional Network (R-GCN) by Schlichtkrull et al. [20-21] to obtain the following convolution
function [1]:

H
(l+1)
i = tanh

( N∑
j=1

Y∑
y=1

Ãijy
|Ni|

f (l)y (H
(l)
j , xi) + f (l)s (H

(l)
i , xi)

)
(2)

H
(l+1)
i represents the output of a graph convolution layer. The first term sums up the graph convolu-

tion for every node, xi, in the previous layer, H(l)
j , with its neighbors in Ã, a modified version of the

adjacency matrix. Dividing by |Ni| (the number of neighbors of the i-th node) normalizes the output.
The function f (l)y is from a family of affine functions for every edge type, and it performs the graph
convolution step in the R-GCN. Similarly, fs is a function that adds self-loops to the output of each
layer [20].

We must aggregate the output of the final layer of the R-GCN into a scalar value for the discriminator
and the reward networks. We use a soft-attention mechanism to obtain some "attention glimpse," or
scalar, as follows [1]:

HG = tanh

(∑
v∈V

σ(i(H(l)
v , xv))� tanh(j(H(l)

v , xv))

)
(3)
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Where HG is the scalar output of the soft-attention mechanism as applied to the entire graph, G. Two
different multilayer perceptrons are represented by i and j, σ is the sigmoid activation function, and
� is element-wise multiplication [1].

2.3 Deep Deterministic Policy Gradient (DDPG) and the Generator Loss Function

De Cao and Kipf framed the graph generation process as a one-step RL episode where the actor
(i.e. the generator) must choose an action (i.e. an output graph) from a high-dimensional action
space. Presented this way, the deep deterministic policy gradient (DDPG) algorithm [22] is an
appropriate method of learning to optimize the actor’s policy because it is capable of operating in
high-dimensional spaces with neural networks. De Cao and Kipf cast the generator as the policy
of the MolGAN agent, and the reward function serves as the critic in this paradigm. The authors
use a streamlined version of the DDPG approach, neglecting the use of experience replay and target
networks, because we are working with i.i.d. data in this case [1].

Ultimately, we can write the loss function for the generator as follows [1]:

L(z(i); θ) = λ
(
−Dφ(Gθ(z))

)
+ (1− λ)

(
− R̂ψ(Gθ(z))

)
(4)

Where R̂ψ is the output of the reward network, and λ is a hyperparameter for tuning the trade-off
between the WGAN component and the RL component of the generator’s loss [1].

3 Results

3.1 Novel Reward Objective

The MolGAN architecture uses a neural network to approximate a specific reward function provided
by the user. This function approximator provides a gradient that the generator can follow to maximize
reward. The reward network must minimize the mean squared error between its predictions and the
actual outputs from the reward function (R) for both real and fake data [1]:

L
(
Gθ(z(i)),x(i);ψ

)
=

(
R̂ψ(Gθ(z(i))−R(Gθ(z(i))

)2

+

(
R̂ψ(x

(i))−R(x(i))

)2

(5)

In this paper we created a novel reward function that computes the average node degree for every
graph in a set. The function assigns a score in the range [0, 1] based on how closely the average node
degree for a set of graphs matches the desired value, similar to the MolGAN approach [1].

3.2 Implementation

We conducted a series of experiments with our novel reward function to investigate two key questions:
(1) how well did our novel reward function bias the output of our generator towards the desired
average node degree? And (2) how diverse was our output sample set for varying values of λ?

In accordance with the test conditions established by De Cao and Kipf, in each experiment we trained1

the appropriate version of our model for 300 epochs on a 5K random sampling from the QM9 dataset
[2-3] (we also performed a validation run on an additional 1664 samples). We pretrained the model
for the first 150 epochs (i.e. λ = 1.0) and then for the second half of the training process, we set λ to
the appropriate value. In the results shown below, we computed statistics for 6400 sampled graphs,
after repeating for 5 trials and averaging, unless otherwise stated.

3.3 Effect of Reward Function on Output Bias

First, we varied the desired average node degree, d, in our reward function and trained our model
to bias its outputs to meet this objective. For all of these experiments, we set λ = 0 for the second
half of training. This is following the precedent set by De Cao and Kipf, who found that λ = 0

1We wrote our implementation in TensorFlow v2.3.0 [23]. We chose to use RMSProp [24] (α =1e-3,
ρ = 0.9, momentum= 0) instead of Adam [25] as our optimizer based on the recommendation by Arjovsky et
al. which observed that using momentum-based optimizers tended to perform worse in training a WGAN than
those that optimized without momentum [17].
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maximized the generator’s scores from the reward function. We trained the model to target values of
d = {1, 2, 4, 6} and report the resulting average node degree for each value of d in Table 1. We also
report the percentage of unique (non-isomorphic) graphs. Our results are compared to those from De
Cao and Kipf in [1] and [26]. Figure 2 shows samples of graphs generated by the models.

3.4 Effect of λ on Output Diversity

Second, we investigated the effect that λ had on the diversity of samples from the generator. We
measured this as the percentage of graphs from a set that were unique (n = 6400 for each of 5 trials
unless otherwise stated) after training the model with values of λ = {1.0, 0.75, 0.5, 0.25, 0.05, 0.0}.
We set d = 2 for all trials and also report the resulting average node degree. The results are shown
in Table 2, and we compare them to De Cao and Kipf’s findings in [1],2 including their model’s
performance with respect to solubility, which they were attempting to optimize with their reward
function. We also compare to an additional dataset describing sample diversity and quantitative
estimate of druglikeliness (QED) [15] provided in [26] by De Cao.

4 Discussion

In our first experiment, we observed that our novel reward function was able to bias the average
node degree of the sample graphs obtained after training. The average d values reported agreed
closely with the desired values. The added bias also greatly reduced the percentage of graphs that
were non-isomorphic, from 12.8% to less than 1% for most values of d. These results suggest that
although the model can be biased towards graphs with specific characteristics, it comes at a cost of
greatly reduced output sample diversity.

In reviewing Figure 2, it is clear that as d increased, the sample graphs also showed increasing
numbers of connections between nodes. Interestingly, the model seems to have also been biased
towards using more fluorine atoms in the d = 4 test. The d = 2 samples seem the most closely
related to the QM9 dataset, and show indications that the model had learned to form benzene-like
rings.

The variation of our results with added bias disagreed with the trend that De Cao and Kipf found in
their original paper [1]. Specifically, they found that bias did not significantly affect the uniqueness
values as compared to tests conducted without added bias [1]. Perhaps our objective - a specific aver-

2De Cao and Kipf computed this as the ratio of all non-isomorphic graphs to all valid graphs. Here we
consider all graphs as valid so we calculated the percentage of all non-isomorphic graphs in a set of 6400 samples
from the original dataset.

Table 1: Effect of reward function objective (d) on output bias and sample diversity. The bolded
values in the MolGAN data indicate the maximum values for each score.

Original MolGAN [1]
Objective % Unique Druglikeliness Synthesizability Solubility

Druglikeliness 2.2 0.62 0.59 0.53
Synthesizability 2.1 0.53 0.95 0.68
Solubility 2.0 0.44 0.22 0.89
All Simultaneously 2.3 0.51 0.82 0.69

Our Results
Objective % Unique Average d

d = 1 0.1 1.1 (average over 3 trials)
d = 2 0.8 2.0
d = 4 0.7 4.0
d = 6 0.7 6.0 (average over 3 trials)
Baseline (λ = 1.0) 12.8 1.4
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Table 2: Effect of λ on output bias and sample diversity.

MolGAN [1] MolGAN [26] Our Results
λ % Unique Solubility % Unique QED % Unique Average d

0.0 2.3 0.86 3.16 0.61 0.8 2.0
0.05 2.5 0.67 - - 2.3 2.0
0.25 1.9 0.65 10.16 0.61 6.3 2.0
0.5 1.8 0.48 31.29 0.56 8.9 2.0
0.75 2.5 0.57 64.35 0.51 9.8 2.1
1.0 2.5 0.54 63.91 0.50 12.8 1.4

Figure 2: Sample graphs for every value of d tested in this work, compared to some sample graphs
from the QM9 dataset. (All graphs were generated using NetworkX [27].)

age node degree - is a more stringent constraint than De Cao and Kipf’s objectives of druglikeliness,
synthesizability and solubility.

In our second experiment, we found that as we decreased λ, we saw a corresponding decrease in the
percentage of unique graphs in our sample set. This suggests that as we pursued the RL objective
more heavily (i.e. as λ decreased), the generator experienced mode collapse and only output a few
unique graphs that met the desired average node degree criteria. This result disagrees with the findings
presented by De Cao and Kipf in [1], but agrees with findings in [26]. In [1], the % unique score did
not vary with λ, but in [26] % uniqueness decreased along with λ. Interestingly, we also observed
that as we weighted the RL objective more heavily, the average node degree values converged on 2.0.

5 Conclusions

In this preliminary investigation, we used a novel reward function to bias the output of a generative
model. The results presented suggest that this approach is capable of generating novel samples that
are similar to the training dataset and also possess desired characteristics as dictated by the reward
function. We intend to pursue this approach further to predict the shape of nanorobots formed with
DNA nanotechnology components, using only low-fidelity data.

However, our data also showed reduced sample diversity with added bias, which could potentially
limit our ability to accurately predict all the possible nanorobots we would see in vitro. In future work
we will investigate alternative approaches to biasing the output of a GAN so that we can preserve our
ability to output graphs with specific characteristics while expanding the diversity of the output.
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Broader Impact

This paper is intended to benefit other researchers who wish to apply generative models to their own
research by demonstrating a new approach. It is always possible that our model and our approach
to adding bias could be used to tune the output graphs for discriminatory or dangerous purposes.
There is limited risk of bias in the QM9 dataset [2-3] what we used, because it is a collection of small
organic molecules (up to 9 heavy atoms), and so should not contain any human-based discriminatory
bias.
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