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Abstract

Traditional linear subspace reduced order models (LS-ROMs) are able to accelerate
physical simulations, in which the intrinsic solution space falls into a subspace
with a small dimension, i.e., the solution space has a small Kolmogorov n-width.
However, for physical phenomena not of this type, such as advection-dominated
flow phenomena, a low-dimensional linear subspace poorly approximates the
solution. To address cases such as these, we have developed an efficient nonlinear
manifold ROM (NM-ROM), which can better approximate high-fidelity model
solutions with a smaller latent space dimension than the LS-ROMs. Our method
takes advantage of the existing numerical methods that are used to solve the
corresponding full order models (FOMs). The efficiency is achieved by developing
a hyper-reduction technique in the context of the NM-ROM. Numerical results
show that neural networks can learn a more efficient latent space representation
on advection-dominated data from 2D Burgers’ equations with a high Reynolds
number. A speed-up of up to 11.7 for 2D Burgers’ equations is achieved with an
appropriate treatment of the nonlinear terms through a hyper-reduction technique.

1 Introduction

Physical simulations are influencing developments in science, engineering, and technology more
rapidly than ever before. However, high-fidelity, forward physical simulations are computationally
expensive and, thus, make intractable many decision-making applications, such as design optimization,
inverse problems, optimal controls, and uncertainty quantification. These applications require many
forward simulations to explore the parameter space in the outer loop. To compensate for the
computational expense issue, many surrogate models have been developed: from simply using
interpolation schemes for specific quantity of interests to physics-informed surrogate models. This
paper focuses on the latter because a physics-informed surrogate model is more robust in predicting
physical solutions than the simple interpolation schemes.

Among many types of physics-informed surrogate models, the projection-based linear subspace
reduced order models (LS-ROMs) take advantage of both the known governing equation and data
with linear subspace solution representation [1]. Although LS-ROMSs have been successfully applied
to many forward physical problems [2—10] and partial differential equation(PDE)-constrained opti-
mization problems [11-14], the linear subspace solution representation suffers from not being able
to represent certain physical simulation solutions with a small basis dimension, such as advection-
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dominated or sharp gradient solutions. This is because LS-ROMs work only for physical problems,
in which the intrinsic solution space falls into a subspace with a small dimension, i.e., the solution
space has a small Kolmogorov n-width. Although there have been many attempts to resolve these
shortcomings of LS-ROMs with various methods, [15-29], all these approaches are still based on the
linear subspace solution representation. We transition to a nonlinear, low-dimensional manifold to
approximate the solution better than linear methods.

There are many works available in the current literature that looked into the nonlinear manifold
solution represenation, using neural networks (NNs) as surrogates for physical simulations [30—48].
However, these methods do not take advantage of the existing numerical methods for high-fidelity
physical simulations. Recently, a neural network-based ROM is developed in [49], where the weights
and biases are determined in the training phase and the existing numerical methods are utilized in
their models. The same technique is extended to preserve the conserved quantities in the physical
conservation laws [50]. However, their approaches do not achieve any speed-up because the nonlinear
terms that still scale with the corresponding FOM size need to be updated every time step or Newton
step.

We present a fast and accurate physics-informed neural network ROM with a nonlinear manifold
solution representation, i.e., the nonlinear manifold ROM (NM-ROM). We train a shallow masked
autoencoder with solution data from the corresponding FOM simulations and use the decoder as
the nonlinear manifold solution representation. Our NM-ROM is different from the aformentioned
physics-informed neural networks in that we take advantage of the existing numerical methods of
solving PDE in our approach and a considerable speed-up is achieved.

2  Full order model

A parameterized nonlinear dynamical system is considered, characterized by a system of nonlinear
ordinary differential equations (ODEs), which can be considered as a resultant system from semi-
discretization of Partial Differential Equations (PDEs) in space domains

dx

o = f@ ), x(0p) = zo(p), (D
where ¢t € [0, 77 denotes time with the final time 7" € R, and 2(¢; pt) denotes the time-dependent,
parameterized state implicitly defined as the solution to problem (1) with = : [0,7] x D — RY:.
Further, f : R x [0,7] x D — RMs with (w, 7;v) — f(w, 7;v) denotes the time derivative
of x, which we assume to be nonlinear in at least its first argument. The initial state is denoted by
o : D — RNs and 1 € D denotes parameters in the domain D C R™».

A uniform time discretization is assumed throughout the paper, characterized by time step At € R
and time instances t" = ¢"~1 4+ At forn € N(N;) with t® =0, N; € N, and N(N) :== {1,...,N}.
To avoid notational clutter, we introduce the following time discretization-related notations: x,, :=
x(t"; 1), T = (" 1), &p = &(t"; ), and f,, = f(ax(t"; u),t"; u), where x, &, & and f are
defined in. The implicit backward Euler (BE)' time integrator numerically solves Eq. (1), by solving
the following nonlinear system of equations, i.e., €, — €,—1 = Atf , for &, at n-th time step. The
corresponding residual function is defined as

n*
rRE(Tn; Tno1, 1) ==Xy — Ty — ALf,. (2)

3 Nonlinear manifold reduced order model (NM-ROM)

The NM-ROM applies solution representation using a nonlinear manifold S := {g () |0 € R"=},
where g : R? — RNs with n, < N, denotes a nonlinear function that maps a latent space of
dimension ng to the full order model space of dimension, N,. That is, the NM-ROM approximates
the solution in a trial manifold as

TRET==Tres+9g(T). 3)

'Other time integrators can be used in our NM-ROMs.



The construction of the nonlinear function, g, is explained in Section 4. By plugging Eq. (3) into
Eq. (2), the residual function at nth time step becomes
reE(Tn; Tn_1, ) == rgE(wref +g(x,) iTref + 49 (Tp—1), 1)
=g (ﬁjn) —g (ﬁjn—l) - At.f(mref +g (in) ytns Il’)a

which is an over-determined system that we close with the least-squares Petrov—Galerkin (LSPG)
projection. That is, we minimize the squared norm of the residual vector function at every time step:

“4)

1
& = argmin o [P (93201, )3 5)
vER™s

The Gauss—Newton method with the starting point &, _; is applied to solve the minimization
problem (5). However, the nonlinear residual vector, ¥y, scales with FOM size and it needs to be
updated every time the argument of the function changes, which occurs either at every time step
or Gauss—Newton step. More specifically, if the backward Euler time integrator is used, g (&),
f(@rer + g (2n),t; ), and their Jacobians need to be updated whenever &,, changes. Without any
special treatment on the nonlinear residual term, no speed-up can be expected. Thus, we apply a
hyper-reduction to eliminate the scale with FOM size in the nonlinear term evaluations (see Section 5).
Finally, we denote this non-hyper-reduced NM-ROM as NM-LSPG.

4 Shallow masked autoencoder

The nonlinear function, g, is the decoder D of an autoencoder in the form of a feedforward neural
network. The autoencoder compresses FOM solutions of Eq. (1) with an encoder E and decompresses
back to reconstructed FOM solution with an decoder D. The autoencoder is trained to reconstruct the
FOM solutions of Eq. (1) by minimizing the mean square error between original and reconstructed
FOM solutions. Therefore, the dimension of the encoder input and the decoder output is N and the
dimension of the encoder E output and the decoder D input is n.

We intentionally use a non-deep neural network, i.e., three-layer autoencoder, for the decoder to
achieve an efficiency that is requried by the hyper-reduction (see Section 5). More specifically, the
first layers of the encoder E and decoder D are fully-connected layers, where the nonlinear activation
functions are applied and the last layer of the encoder FE is fully-connected layer with no activation
functions. The last layer of the decoder D is sparsely-connected layer with no activation functions.
The sparsity is determined by a mask matrix. These network architectures are shown in Fig. 1.

Encoder Decoder Encoder Sparse decoder

(a) Without masking (b) With masking

Figure 1: Three-layer encoder/decoder architectures: (a) unmasked and (b) after the sparsity mask
is applied. Nodes and edges in orange color represent active path in the subnet that stems from the
sampled outputs that are marked as the orange disks. Note that the masked shallow neural network
has a sparser structure than the unmasked one. A sparser structure leads to a more efficient model.

There is no way to determine hidden layer sizes a priori. If the number of learnable parameters is
not enough, the decoder is not able to represent the nonlinear manifold well. On the other hand,



too many learnable parameters may result in over-fitting, so the decoder is not able to generalize
well, which means the trained decoder cannot be used for problems whose data is unseen, i.e., the
predictive case. To avoid over-fitting, we first divide the training data into train and validation datasets.
Then, the autoencoder is trained using the train dataset and tested for the generalization using the
validation dataset. If the mean squared errors on the validation and train datasets are very different,
then over-fitting has occurred. We then reduce the size of the hidden layer and re-train the model
[51].

5 Hyper-reduction

The hyper-reduction techniques are developed to eliminate the FOM scale dependecy in nonlinear
terms [52-54, 17, 19], which is essential to acheive an efficiency in our NM-ROM. We follow the
gappy POD approach [55], in which the nonlinear residual term is approximated as

r~e,r, (6)

where ®, := [¢,.,..., P, | € RN-*"" n, < n, < N,, denotes the residual basis matrix and
7 € R" denotes the generalized coordinates of the nonlinear residual term. Here, r represents
a residual vector function, e.g., the backward Euler residual, ¥}, defined in Eq. (4). We use
the singular value decomposition of the FOM solution snapshot matrix to construct ®,., which is
justified in [19]. In order to find #, we apply a sampling matrix Z” := [e,,, .. ., ep, | € R=> N,
ngs < n, < n, < Ny on both sides of (6). The vector, e,,,, is the p;th column of the identity matrix
Iy, € RN:XN: Then the following least-squares problem is solved:

1 2
i = argmin - HZT(F ) ‘ )
HERTT 2 2

The solution to Eq. (7) is given as ++ = (Z7 ®,.)T Z”¥, where the Moore—Penrose inverse of a matrix
A € R"=*" with full column rank is defined as A" := (AT A)~1 A" Therefore, Eq. (6) becomes

¥ =~ Pr, where P := ®,.(Z T<I>,.)TZ T is the oblique projection matrix. We do not construct the
sampling matrix Z. Instead, it maintains the sampling indices {p1, ... ,pn,} and corresponding
rows of ®,. and r. This enables hyper-reduced ROMs to achieve a speed-up. The sampling indices
(i.e., Z) can be determined by Algorithm 3 of [17] for computational fluid dynamics problems and
Algorithm 5 of [56] for other problems.

The hyper-reduced residual, P¥% g, is used in the minimization problem in Eq. (5):

2

(27®,) 2 (03001, 0)| (®)

&, = argmin
2

|
DERNs
Note that the pseudo-inverse (Z” ®,.)t can be pre-computed. Due to the definition of 35, in Eq. (4),
the sampling matrix Z needs to be applied to the following two terms: g (&,) — g (£,—1) and
f(@rep + g (), t; ) at every time step. The first term, Z” (g (&,,) — g (Z,_1)), requires that
only selected outputs of the decoder be computed. Furthermore, for the second term, the nonlinear
residual elements that are selected by the sampling matrix need to be computed. This implies that
we have to keep track of the outputs of g that are needed to compute the selected nonlinear residual
elements by the sampling matrix, which is usually a larger set than the outputs that are selected solely
by the sampling matrix. Therefore, we build a subnet that computes only the outputs of the decoder
that are required to compute the nonlinear residual elements. Such outputs are demonstrated as the
solid oragne disks and the corresponding subnet is depicted in Fig. 1(b). Finally, we denote this
hyper-reduced NM-ROM as NM-LSPG-HR.

6 2D Burgers’ equation

We demonstrate the performance of our NM-ROMs (i.e., NM-LSPG and NM-LSPG-HR) by compar-
ing it with LS-ROMs (i.e., LS-LSPG and LS-LSPG-HR) that was first introduced in [56]. We solve



the following parameterized 2D viscous Burgers’ equation:

ou 0w ou_ 1 (0% Pu
ot ox dy  Re \0z2 = 0y?
@—&-u@-i-v%—i &_ﬁ_@iv 9
ot ox Oy Re \0x?2 0Oy?
(z,y) € 2=10,1] x [0,1]
te0,2],
with the boundary condition
w(@,y,t;p) =v(x,y, tip) =0 on I'={(z,y)|lz € {0,1},y € {0,1}} (10)
and the initial condition
| psin(27x) -sin (27y) if (x,y) € [0,0.5] x [0, 0.5)
u(®,y, 05 1) = { 0 otherwise an
oy | psin(2rz) - sin (27y) if (z,y) € [0,0.5] x [0,0.5]
v(@,y, 05 ) = { 0 otherwise 2)

where n € D = [0.9,1.1] is a parameter and w(z,y,t; 1) and v(x,y,t; 1) denote the = and y
directional velocities, respectively, with u : 2 x [0,2] x D — R and v : Q x [0,2] x D — R defined
as the solutions to Eq. (9), and Re is a Reynolds number which is set Re = 10, 000. For this case,
the FOM solution snapshot shows slowly decaying singular values. We observe that a sharp gradient,
i.e., a shock, appears in the FOM solution (e.g., see Fig. 3(a)). We use 60 x 60 uniform mesh with the
backward difference scheme for the first spatial derivative terms and the central difference scheme
for the second spatial derivative terms. Then, we use the backward Euler scheme with time step size
At = n%, where n; = 1, 500 is the number of time steps.

For the training process, we collect solution snapshots associated with the parameter yt € Diygin =
{0.9,0.95,1.05, 1.1}, such that 7, = 4, at which the FOM is solved. Then, the number of train
data points i iy - (n¢ + 1) = 6,004 and 10% of the train data are used for validation purposes. We
employ the Adam optimizer [57] with the SGD and the initial learning rate of 0.001, which decreases
by a factor of 10 when a training loss stagnates for 10 successive epochs. We set the encoder and
decoder hidden layer sizes to 6, 728 and 33, 730, respectively and vary the dimension of the latent
space from 5 to 20. The weights and bias of the autoencoder are initialized via Kaiming initialization
[58]. The batch size is 240 and the maximum number of epochs is 10, 000. The training process is
stopped if the loss on the validation dataset stagnates for 200 epochs.

After the training is done, the NM-LSPG and LS-LSPG solve the Eq. (9) with the target parameter
1 =1, which is not included in the train dataset. Fig. 2 shows the relative error versus the reduced
dimension ns for both LS-LSPG and NM-LSPG. It also shows the projection errors for LS-ROMs and
NM-ROMs, which are the lower bounds that any LS-ROMs and NM-ROMs can reach, respectively.
As expected the relative error for the NM-LSPG is lower than the one for the LS-LSPG. We even
observe that the relative errors of NM-LSPG are even lower than the LS projected error.

We vary the number of residual basis and residual samples, with the fixed number of training
parameter instances Ny, = 4 and the reduced dimension ng = 5, and measure the wall-clock time.
The results are shown in Table 1. Although the LS-LSPG-HR can achieve better speed-up than the
NM-LSPG-HR, the relative error of the LS-LSPG-HR is too large to be reasonable, e.g., the relative
errors of around 37%. On the other hand, the NM-LSPG-HR achieves much better accuracy, i.e., a
relative error of around 1%, and a factor 11 speed-up.

Table 1: The top 6 maximum relative errors and wall-clock times at different numbers of residual
basis and samples which range from 40 to 60.

NM-LSPG-HR LS-LSPG-HR
Residual basis, n,. 55 56 51 53 54 44 59 53 53 53 53 53
Residual samples, 7, 58 59 54 56 57 47 59 58 59 56 55 53
Max. rel. error (%) 093 | 094 | 095 | 097 | 097 | 098 | 34.38 | 37.73 | 37.84 | 37.95 | 37.96 | 37.97
Wall-clock time (sec) | 12.15 | 12.35 | 12.09 | 12.14 | 12.29 | 12.01 | 526 | 5.02 | 486 | 5.05 | 475 | 7.18
Speed-up 11.58 | 11.39 | 11.63 | 11.58 | 11.44 | 11.71 | 26.76 | 28.02 | 28.95 | 27.83 | 29.61 | 19.58
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Figure 2: The comparison of the NM-LSPG-HR and NM-LSPG on the maximum relative errors. A
maximum relative error that is 1 means the ROM failed to solve the problem.

Fig. 3 shows FOM solutions at the last time and absolute differences between FOM and other
approaches, i.e., NM-LSPG-HR and LS-LSPG-HR with the reduced dimension being ns; = 5 and a
black-box NN approach (BB-NN). The BB-NN approach is similar to the one described in [59]. The
main difference is that L1-norms and physics constraints were not used in our loss function. This
approach gave a maximum relative error of 38.6% and has a speed-up of 119. While this approach
is appealing in that it does not require access to the PDE solver, the errors are too large for our
application. For NM-LSPG-HR, 55 residual basis dimension and 58 residual samples are used and
for LS-LSPG-HR, 59 residual basis dimension and 59 residual samples are used. Both FOM and
NM-LSPG-HR show good agreement in their solutions, while the LS-LSPG-HR is not able to achieve
a good accuracy. In fact, the NM-LSPG-HR is able to achieve an accuracy as good as the NM-LSPG
for some combinations of the small number of residual basis and residual samples.

Finally, Fig. 2(b) shows the maximum relative error over the test range of the parameter points. Note
that the NM-LSPG and NM-LSPG-HR are the most accurate within the range of the training points,
i.e., [0.9,1.1]. As the parameter points go beyond the training parameter domain, the accuracy of the
NM-LSPG and NM-LSPG-HR start to deteriorate gradually. This implies that the NM-LSPG and
NM-LSPG-HR have a trust region. Its trust region should be determined by each application.
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Figure 3: (a) Solution snapshots, u, of FOM and absolute differences of (b) NM-LSPG-HR, (c)
LS-LSPG-HR, and (d) BB-NN with respect to FOM solution at ¢t = 2.

7 Discussion & conclusion

In this work, we have successfully developed an accurate and efficient NM-ROM. We demonstrated
that both the LS-ROM and BB-NN are not able to represent advection-dominated or sharp gradient
solutions of 2D viscous Burgers’ equation with a high Reynolds number. However, our new approach,
NM-LSPG-HR, solves such problem accurately and efficiently. The speed-up of the NM-LSPG-HR
is achieved by choosing the shallow masked decoder as the nonlinear manifold and applying the
efficient hyper-reduction computation. Because the difference in the computational cost of the FOM



and NM-LSPG-HR increases as a function of the number of mesh points, we expect more speed-up
as the number of mesh points becomes larger.

Compared with the deep neural networks for computer vision and natural language processing
applications, our neural networks are shallow with a small number of parameters. However, these
networks were able to capture the variation in our 2D Burgers’ simulations. A main future work
for transferring this work to more complex simulations, will be to find the right balance between a
shallow network that is large enough to capture the data variance and yet small enough to run faster
than the FOM. Another future work will be to find an efficient way of determining the proper size of
the residual basis and the number of sample points a priori. To find the optimal size of residual basis
and the number of sample points for hyper-reduced ROMs, we relied on test results. This issue is not
just for NM-LSPG-HR, but also for LS-LSPG-HR.

Broader Impact

The broader impact of this work will be to accelerate physics simulations to improve design optimiza-
tion and control problems, which require thousands of simulation runs to learn an optimal design
or viable control strategy. While this is not computationally feasible with high-fidelity FOMs, the
development of the NM-ROMs is an important step in this direction.
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