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Abstract

The adoption of Machine Learning (ML) for building emulators for complex
physical processes has seen an exponential rise in the recent years. While neural
networks are good function approximators, optimizing the hyper-parameters of the
network to reach a global minimum is not trivial, and often needs human knowl-
edge and expertise. In this light, automatic ML or autoML methods have gained
large interest as they automate the process of network hyper-parameter tuning. In
addition, Neural Architecture Search (NAS) has shown promising outcomes for
improving model performance. While autoML methods have grown in popularity
for image, text and other applications, their effectiveness for high-dimensional,
complex scientific datasets remains to be investigated. In this work, a data driven
emulator for turbulence closure terms in the context of Large Eddy Simulation
(LES) models is trained using Artificial Neural Networks and an autoML frame-
work based on Bayesian Optimization, incorporating priors to jointly optimize the
hyper-parameters as well as conduct a full neural network architecture search to
converge to a global minima, is proposed. Additionally, we compare the effect
of using different network weight initializations and optimizers such as ADAM,
SGDM and RMSProp, to explore the best performing setting. Weight and function
space similarities during the optimization trajectory are investigated, and critical
differences in the learning process evolution are noted and compared to theory. We
observe ADAM optimizer and Glorot initialization consistently performs better,
while RMSProp outperforms SGDM as the latter appears to have been stuck at a
local minima. Therefore, this autoML BayesOpt framework provides a means to
choose the best hyper-parameter settings for a given dataset.
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1 Introduction

Fluid turbulence is a multi-scale phenomenon and is an essential component of modeling engineering-
relevant flows. While solving the full Navier Stokes using Direct Numerical Simulation (DNS) results
in the most accurate representation of the complicated, non-linear, non-local, multi-scale phenomenon,
DNS is often computationally intractable. Engineering level solutions based on Reynolds Averaged
Navier-Stokes (RANS) and Large Eddy Simulations (LES) alleviate this issue by resolving the larger
integral length scales and modelling the smaller unresolved scales by introducing a linear operator to
the Navier-Stokes equation to reduce the simulation complexity. These models however suffer from
the curse of turbulence closure. The linear eddy-viscosity model represents one of the most popular
methods for Reynolds stress closure for two-equation RANS as well as Smagronisky-LES models
[1, 2]. However, these approximates models are commonly phenomenological/heuristic in nature and
thus require fitting to high fidelity DNS datasets for idealized flows [3].

With the incredible strides in the development of sophisticated Machine Learning (ML) algorithms
made in the last decade it is only logical that these tools be widely adopted for use with scientific
applications (refer to [4, 5, 6] for a review). In particular, Artificial Neural Networks (ANN) have
shown great performance for function approximations [7] and recently Deep Neural Network (DNN)-
based approaches for fluid problems have gained wide attention [3, 8, 9, 10, 11, 12, 13, 14, 15].
Specifically, the use of ML methods for developing data-driven Reynolds stress closures has shown a
lot of promise for canonical as well as complex engineering flows [5, 6, 16, 17, 18, 19]. We extend
this effort to emulate a data-driven closure term for compressible flows relevant to modeling advanced
propulsion systems.

When training a neural network, one of the the main difficulties is setting the tunable hyper-parameters
which need to be chosen and directly dictate the performance of the data-driven model. Manually
tuning these hyper-parameters requires expertise and a-priori information about their sensitivities,
which can be difficult to develop as more of these techniques are applied to large-scale scientific
datasets. In addition, there are some challenges in transferring the best practices from other ML
areas to Scientific ML. Primarily because the data used to develop these algorithms are different than
scientific data as the latter can be high-dimensional, multi-modal, complex, structured and/or sparse
[20]. Often, these suggested settings for hyper-parameters are incompatible due to the nature of the
complex non-convex loss manifold for these datasets.

Automatic Machine Learning, or autoML, promises to be an important effort in this area where the
optimization occurs without human intervention, and often times yield robust results. Along with
tuning parameters, searching for optimal neural network architecture or Neural Architecture Search
(NAS), in terms of layer depth and width, has previously shown performance boost [21, 22].

1.1 Our Contributions

In this work, a data driven physics emulator is built for Reynolds Stress closure term using a simple
feed-forward neural network and the a-priori performance reported. The effectiveness of using an
autoML framework based on Bayesian Optimization to automatically discover optimal parameter
as well as identify the best neural network architecture for emulating closure terms based on large
resolved scale quantities are investigated. Different optimizers (RMSProp, ADAM and SGDM) and
weight initialization (Glorot, He, Narrow-Normal) strategies are used to identify best performing
settings that is hyper-parameter and architecture. In addition, the training process of the different
optimizer and initialization strategies are compared using weight and function space similarities.

2 Physics of the Problem

The LES-filtered governing equations (using Favre-averaging) for the balance of mass and momentum
are as below:
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where u represents the velocity, p is the pressure, ρ the fluid density, ν the dynamic the viscosity
and τ the subgrid stress term. The effect of the sub-grid scale appears on the right hand side of the
governing equations through the sub-grid scale stresses, τij , which are modelled using the Boussinesq
approximation [23], and the assumption by Smagorinsky that the smallest scales are isotropic [2].
Based on Prandtl mixing length theory, the subgrid viscosity can be derived in terms of characteristic
length and one velocity scale [24] as follows, therefore helping to close the Reynolds stress term

τij
sgs − 1

3
τkk

sgsδij = −µsgsSij (3)

µsgs = ρ(Cs∆)2|S̄| (4)

where the superscript sgs stands for subgrid scale terms, ∆ is the filter width, and Cs is the Smagorin-
sky constant, and Sij is the strain rate tensor and is calculated by taking off-diagnal gradients of
velocities. In conclusion, the above approximation for the eddy viscosity assumes that changes in the
resolved fields are slow, so that subgrid eddies can adjust themselves quickly to the rate-of-strain
tensor. Thus, a closure based on a single constant is not universally true and the constant value may
have to be adjusted [25], based on fitting the model parameters to high-fidelity data. Since some
form of data-fitting is needed to optimize the subgrid scale model parameters even for this simplified
approach, one can envisage a purely data-driven method to optimally approximate this changing
constant based on large scale resolved terms, motivating our approach. More details about the LES
implementation as well as the accuracy of results is reported in [26].

In this work we aim to derive a functional relationship between the large scale resolved flow features
and the sub-grid scale unresolved terms, and specifically to approximate the subgrid scale viscosity

µsgs = f(Rec, S,Ω,OK,Y ) (5)

where Rec is the Cell Reynolds number, S is the Strain-rate tensor and has six components, Ω is
the rotation-rate tensor, and has three components, OK is the Kinetic energy gradient, and Y is
a non-dimensional term that is a measure of the mesh resolution. The non-dimensionalized input
features are chosen in order to impose Galliean-invariance [27, 12].

3 Machine Learning Approach

Differential programming, based on principles of automatic differentiation, is a paradigm in deep
learning where parameters of the neural network are trained by gradient-based optimizations [28, 29].
This is indeed useful for scientific ML tasks and helps to improve the parameterization of the
approximations of the neural network [30]. In this work, fully connected ANNs are used to find
the functional mapping between the target (µsgs) to the non-dimensional input features. While the
neural network implementation is fairly straightforward and done using MATLAB’s Deep Learning
Toolbox, the a-priori estimation of the best network hyper-parameters, and the architecture itself is
non-trivial due to the multi-scale, non-local, non-linear nature of the dataset. To discover the best
performing settings for our dataset, an Automatic Machine Learning (autoML) strategy is used and,
while there are many available optimization methods [31], the Bayesian Optimization (BayesOpt)
approach, which has shown good performance for other data-driven tasks ([32, 33]) is used. Our
overall approach is shown in Figure 1 and described in detail in [18, 34]. For the purposes of this
paper we limit ourselves to identifying the best performing ANN, given by the BayesOpt algorithm.
The coupling of the ANN to a CFD solver and comparing a-posteriori performance will be the subject
of a subsequent article.

3.1 Automatic Hyper-parameter Tuning using Bayesian Optimization

We explore an automatic hyper-parameter tuning setup within the Bayesian Optimization framework,
in which the learning algorithm’s generalization performance is modeled as a sample from a Gaussian
Process (GP). The posterior distribution induced by the GP leads to efficient use of information
gathered by previous experiments, enabling optimal choices for what parameters to try next. To pick
the hyper-parameters of the next experiment, one can optimize the expected improvement (EI) [35]
over the current best result or the Gaussian process upper confidence bound (UCB) [36]. EI and UCB
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Figure 1: Schematic of the Bayesian Optimization based data-driven physical emulator workflow in
identifying the best performing network hyper-parameters and network architecture

have been shown to be efficient in the number of function evaluations required to find the global
optimum of many multimodal black-box functions [36, 37]. While there are many hyper-parameters
that have an effect on the ANN performance and accuracy, we limit set of parameters to the ones in
Table 1, due to their leading order effect on the network performance.

Table 1: Optimization Matrix with interpolation strategies and range of investigation for each hyper-
parameter. *The Network Depth is kept constant for all layers, to reduce design space search
complexity.

Hyper-Parameter Min. Range Max. Range Interpolation
Init LR 1e-6 1e-2 Logarithmic

LR Drop Factor 10 1000 Integer
Batch Size 100 16000 Logarithmic

Network Depth* 2 10 Integer
Network Width 10 100 Integer

3.1.1 Acquisition Functions for Bayesian Optimization

The acquisition functions evaluate the effectiveness of a point, x, based on the posteriori distribution
function, Q [33]. The Expected Improvement function is used due to its superior performance over
other methods [33]. The Expected-Improvement acquisition function evaluates the expected amount
of improvement in the objective function, ignoring values that cause an increase in the objective. In
other words, it is shown mathematically as:

EI(x,Q) = EQ[max(0, µQ(Xbest − f(x)))] (6)

where µQ(Xbest) is the lowest value of the posterior mean, and Xbest is the location of the lowest
posterior mean.

3.2 Solvers and Initialization of Learnable Parameters

The functional mapping, using a neural network, can be viewed as a function of the learnable
parameters such as weights and biases. In fact the training process of the neural network is often
stochastic - very often two separate runs do not yield the same result. This can be attributed to the
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choice of optimizer, the precision of the learning process as well as the complex, non-convex loss
manifold and the initialization of the weights. This last step has a determination on the performance
of the neural network during the optimization process itself [38, 39, 40]. In this work we explore the
effect of choosing different initialization, from well known ones including Glorot[38], He [39] and
narrow-normal. In addition to the initialization of the weights the performance and evolution of the
training process itself are studied by using different solvers such as ADAM [41], RMSProp [42] and
SGDM [40], within the autoML framework.

4 Results

A well-resolved and validated Large Eddy Simulation dataset [26] is used with over 10 million data
points, taken across four time-steps from a simulation of a compressible flow within the cylinder of
an advanced propulsion system generated using OpenFOAM C++ libraries [43]. 20% of the dataset
is set aside for a-priori testing. Fifty function evaluations are run for the BayesOpt workflow, for
each case, and after each iteration of the BayesOpt run, an error is calculated, ε on the test dataset
defined as:

ε =
abs(ytrue − ypred)

ytrue
(7)

where ytrue is the test data point, and the ypred is the value predicted by the ANN. The best performing
settings for all the possible combinations of optimizers and initializations are reported in Table 2.
For each of our network evaluation, the architecture is optimized by self-repeating blocks of Dense
Layer -> Leaky ReLU activation -> Dropout Layer. The p value of the Dropout layer is set to 0.2, per
best practices [44]. For the specific case of optimizing the network architecture, the best set of Layer
Width, W , and Layer Depth, D, the latter optimizing the number of the self-repeating blocks for a
given BayesOpt evaluation, are identified and reported.

4.1 Network Performance

The final objective of this effort is to not only identify the best settings for a given choice of solver and
initialization as reported in Table 2, but also understand the effective cost one can expect to pay when
this network is coupled to a CFD solver (see Figure 1) to make run-time inferences across multiple
timesteps and grid points, in a realistic CFD simulation. This inference cost is directly proportional
to the size of the network, width (W ) and depth (D). Therefore total number of terms based on the
formulation N = I ∗W +D ∗W ∗W +W ∗O, where I refers to the input features, in this case 14,
O refers to the output features, which is 1 is also reported in Table 2.

Table 2: Best Performing hyper-parameters from autoML BayesOpt

Optimizer Initialization Batch Size Learning Rate Width Depth ε N
ADAM Glorot 1426 9.56e-04 91 10 1e-05 84094
ADAM He 12719 3.77e-04 50 7 2e-04 18207
ADAM narrow-normal 12553 1.65e-04 59 3 1e-03 11272
SGDM Glorot 6814 0.0098 91 9 2e-03 75812
SGDM He 1161 0.0098 89 6 1e-03 48778
SGDM narrow-normal 9609 0.0015 64 5 7e-02 21381

RMSProp Glorot 291 1e-04 78 4 8e-04 25432
RMSProp He 11630 1.86e-05 55 9 1e-03 28004
RMSProp narrow-normal 1085 2e-05 89 2 1e-02 17090

It is found that the ADAM Glorot and ADAM He combinations perform the best in terms of
absolute errors, although the ADAM Glorot configuration has the highest number of parameters. The
RMPSProp on average, performs better than SGDM optimizer. This can be explained as RMSProp is
an adaptive learning rate method and is capable in navigating regions of local optima and whereas that
SGDM performs poorly navigating ravines and makes hesitant progress towards local optima [45].
It is observed that the Glorot initialization consistently has the best performance in terms of error,
ε, which is an interesting result as He and ReLU activation have performed well for Convolutional
Neural Networks [39].
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4.2 Visualizing Weight and Function Space Similarity

We investigate the similarities in the weight and function space for similar as well as differently
initialized trajectories, in an effort to better understand the commonalities in the optimization process.
In order to do that, the simulations are check-pointed after every epoch and the cosine similarity among
the weights are computed, defined by cos(θ1, θ2) =

θT1 θ2
||θ1||||θ2|| , where θ1 and θ2 are the vectorized

weights of the ANN. From the left panel in Figure 2, it is observed the checkpoints along a trajectory
are largely similar in the weight space, in this case for ADAM-Glorot configuration. However, when
compared to the same initialization, He, and different optimizers, ADAM and SGDM we observe
major differences in the trajectories in the weight space and this can be attributed to the optimization
methods and the stochasticity of the learning process therein. Therefore we see that functions within
a single trajectory exhibit higher similarity and this similarity map is optimizer-initialization specific.

Figure 2: Cosine-similarity between checkpoints to measure weight space alignment for the ADAM-
Glorot (left), SGDM-He (middle) and ADAM-He (right) configurations. This shows the stochasticity
of the weights trajectories that can occur during the training process.

In addition to investigating the similarities in the weight space which are inherently high-dimensional
and therefore non-intuitive, the use of dimensionality reduction methods are used, such as t-SNE
[46, 47, 48] to observe the trajectory of the checkpoints in a 2D space in Figure 3. It is observed
that the Glorot and He have overlapping similarities, which makes sense as they both have similar
functional forms and theoretical analysis: they both find a good variance for the distribution from
which the initial parameters are drawn and only differ in the type of distribution they use - Gaussian
for He, and Uniform for Glorot.

On the other hand, the t-SNE trajectory of the narrow-normal initialization which independently
samples from the normal distribution with zero mean and a standard deviation of 0.01, thereby
not incorporating information from the data, only occupies a small region in the phase space. For
the same initialization, and different solvers, it is observed all the three different solutions start off
from the same point but quickly diverge and follow different trajectories, consistent with previously
reported observations [49]. This shows that the functions explored by different optimizers are far
away and this leads to the divergence and differences in predictions, while functions explored within
a single trajectory tend to be much more similar. This observation is independently verified by
comparing weight-space similarities in the first few dense layer for two separate fully converged
networks, trained using the same initialization, and different solvers and observe no discernible
common patterns (high similarity scores) in the map, see Figure 5 in the Appendix.

Lastly another dimensionality reduction method in Singular Value Decomposition (SVD) are used and
the singular values for each set of runs plotted. It is observed that the narrow-normal initialization has
the least significant number of indices, which can be explained due to the nature of the initialization.
Whereas for the He and Glorot initializations RMSProp and SGDM tends to have higher singular
values compared to ADAM, thereby making ADAM the most suitable candidate for a pruning-type
operation to reduce the number of overall parameters in the network. This is important for the primary
objective of this effort to help isolate and identify candidate network settings that can be successfully
coupled to a non-linear PDE solver for run-time predictions.

6



Figure 3: The left panel shows the 2D point rendering using t-SNE for different initialization for
the same solver, ADAM. Glorot and He have similar functional space, whereas the narrow-normal
indicates a very small region of exploration in the function space, explaining the high error observed
in Table 2. The right panel shows the trajectories of the different optimizer, given same weight
initialization and shows the difference in the function space exploration of each optimizer.

5 Conclusions

In this work, the effectiveness of an automatic Machine Learning framework, based on Bayesian Op-
timization, is demonstrated in identifying the best network parameters in a differential programming
paradigm relevant to scientific computing. We provide a measure of efficiency for using these settings
in terms of expected advantage-to-compute. Comparing different initialization and solver settings,
and dimensionality reduction techniques, the differences in the learning process are observed, and
suitability in identifying candidate network settings for pruning tasks matrix reduction for cheaper
run-time inference are noted.
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Figure 4: Singular values for different initialization and optimizers for the first dense layer in the
trained network, showing key differences in the nature of the weight matrix. RMSProp and SGDM
have higher singular values compared to ADAM for the same settings. Specifically, ADAM-Glorot
stands as best candidate for a low-rank approximation pruning-type operation.
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7 Appendix

Figure 5: We compare the ADAM and SGDM optimizers for the same settings of initialization at
different dense layers of the network and find no resemblance of similarity between their weights
indicating very different function and weight space trajectories for their optimized settings.
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