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Abstract

Significant progress has been made to obtain approximate solutions to PDEs using
neural networks as a basis. One of these approaches (and the most popular and
well-developed one) is the Physics Informed Neural Network (PINN). PINN has
proved to provide promising results in various forward and inverse problems with
great accuracy. However, PINN cannot be employed in its native form for solving
problems where the PDE changes its form or when there is a discontinuity in the
parameters of PDE across different sub-domains. Using separate PINNs for each
sub-domain and connecting the corresponding solutions by interface conditions is
a possible solution for this. However, this approach demands a high computational
burden and memory usage. Here, we present a new method, Transfer Physics
Informed Neural Network (TPINN), where one or more layer of PINN across
different non overlapping sub-domains are changed keeping the other layers same
for all the sub-domains. Solutions from different sub-domains are connected via
problem specific interface conditions which are incorporated in to the loss function.
We demonstrate the efficacy of TPINN through three heat transfer problems.

1 Introduction

Artificial Neural Network (ANN) has gained much popularity in the recent past and is used widely
in different scientific domains for highly complex and nonlinear function approximation purposes.
Thanks to the Universal approximation theorem, which validates the approximation capabilities of
neural networks [1]. The solution of differential equations using neural networks is an active research
area for the past several years. Lagaris et al. [2] used ANN to solve initial and boundary value
problems defined on orthogonal box boundaries in which the trail solution consists of two parts;
the first part satisfies initial/boundary condition and the second part involves a feedforward neural
network containing adjustable parameters. PDE defined on geometry with complex boundary is
solved using multilayer perceptron and radial basis functions in [3]. In [4, 5], nonlinear ordinary
differential equations are solved using feedforward neural networks by determining the output weights
using the weighted residual method.

Raissi et al. [6] developed an efficient neural network-based approach Physics Informed Neural
Network (PINN) for solving forward and inverse problems involving nonlinear partial differential
equations by using the benefits of automatic differentiation. It can combine the forward and the
inverse problem in one platform effortlessly. However, PINN in its native form fails when PDE
formulation changes or when there is a discontinuity in the parameters of PDE across different
sub-domains. The sub-domains can be obtained by partitioning the global computational domain
or physical sub-domains part of the problem definition, which adds up to the total computational
domain. One way to solve this issue is to use separate PINNs for each sub-domain and connect the
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corresponding solutions by interface conditions [7]. This approach demands a high computational
burden and memory usage.

In this paper, we present Transfer Physics Informed Neural Network (TPINN) in which hidden
layers of PINNs are partially shared across sub-domains. Solutions from different sub-domains are
connected using problem-specific interface conditions incorporated into the loss function. We found
out that TPINN reduces memory requirements, computational burden, and appreciably enhance
accuracy.

The paper is organized as follows. In Section 2 we do an overview of PINN. In Section 3 we present
the algorithm of TPINN. In Section 4, we demonstrate the capability of TPINN using one forward
and inverse problem of heterogeneous heat conduction. Finally, we conclude the paper in Section 5.

2 Physics informed neural network (PINN)

For solving PDEs Let the general form of a time dependant non-linear partial differential equation
(PDE) for the function u(x1, x2, .., xN ; t) of a time variable t and one or more spatial variables
x1, x2, .., xN be:

ut + f(x1, .., xN ;u;ux1 , .., uxN
;ux1x1 , .., ux1xN

, ..; γ),

x = [x1, x2, .., xN ]T ∈ Ω ⊂ RN , t > 0,
(1)

subject to appropriate boundary conditions and initial condition u(x, 0) = uo. Let FL : RDinRDout

be a feed forward neural network with L layers and Nq neurons in the qth layer where 1 ≤ q ≤
L. Input vector to the neural network is denoted by y ∈ RDin . If we denote the set of all weights
and biases as Θ = {Wq,bq}, the output of the neural network is given by û(y)Θ = FL(y,Θ).
Consider Eq. (1). Let us define g(x, t) to be given by the left-hand-side of Eq. (1); ie,

g(x, t) := ut + f(x1, .., xN ;u;ux1 , .., uxN
;ux1x1 , .., ux1xN

, ..; γ) (2)

When we approximate u(x, t) by a deep neural network which outputs û(x, t), we get a physics
informed neural network (PINN) which approximates g(x, t) as ĝ(x, t) because of the assump-
tion we made in Eqn. (2). This network can be constructed by applying the chain rule for
differentiating compositions of functions using automatic differentiation. The total parame-
ters of this neural network is learned by minimizing the mean squared loss MSEPINN =

MSEpde + MSEbc + MSEic where, MSEpde = 1
Npde

∑Npde

i=1 |ĝ(xipde, t
i
pde)|2,MSEbc =

1
Nbc

∑Nbc

i=1 |û(xibc, t
i
bc) − u(xibc, t

i
bc)|2,MSEic = 1

Nic

∑Nic

i=1 |û(xiic, t
i
ic) − u(xiic, t

i
ic)|2. {xi, ti}

represent the random scattered data points from the computational domain upon which the constraints
to satisfy governing PDE / BC / IC are imposed. Fig. 1 demonstrates a two layer deep PINN used for
forward problems.

For solving inverse problems In inverse problem we have unknown parameters γ of PDE in Eqn.
(1) along with the additional information on points {xiinv, tiinv, }

Ninv
i=1 : L (u, xinv, tinv) = 0. PINN

solves inverse problem just like forward problems by embedding the unknown parameters γ to Θ and
they are learned by minimizing the loss MSEPINN = MSEpde +MSEbc +MSEic +MSEinv

where MSEinv = 1
Ninv

∑Ninv

i=1 |L (û, xiinv, t
i
inv)|2.

3 Transfer physics informed neural network (TPINN)

For solving PDEs Let the total computational domain Ω be made up of NSD non overlapping sub-
domains such that, Ω =

⋃NSD

j=1 Ωj . Let gj(x, t) be the PDE formulation with solution uj(x, t) defined
in Ωj along with proper boundary conditions, initial condition and interface conditions. Let >L

j :
RDinRDout denote the neural network which approximates uj(x, t) corresponding to the jth sub-
domain. For any p ⊂ {2, .., L} ∈ N, let Θshared = {Wq,bq},∀q /∈ p,Θj = {Wq,bq},∀q ∈ p,
where Θj represents the set of weights and biases which are unique for each sub-domain neural
network and Θshared is common to all sub-domain neural networks. The output of the neural net-
work constructed using Θshared and Θj for jth sub-domain is given by ûj(x, t) = ûΘj ,Θshared

=

>L
j (x,Θj ,Θshared). Using different Θj and Θshared, we generate the neural network for each
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Figure 1: Schematic of a PINN used for forward problems.

sub-domain. The complete solution corresponding to the whole computational domain is given by
û(x, t) = û(x)Θ =

⋃NSD

j=1 >L
j (x,Θj ,Θshared). When the assumption we made in the Eqn. (2) is ap-

plied on the neural network û(x, t), we get transfer physics informed neural network (TPINN) which
approximates each gj(x, t) as ĝj(x, t) and g(x, t) as ĝ(x, t). The total parameters of TPINN is learned
by minimizing the mean squared loss given by JTPINN = λpdeJpde + λbcJbc + λicJic + λifJif

where Jpde =
∑NSD

j=1 ( 1

Nj
pde

∑Nj
pde

i=1 |ĝj(x
i,j
pde, t

i,j
pde)|2), Jbc =

∑NSD

j=1 ( 1

Nj
bc

∑Nj
bc

i=1 |ûj(x
i,j
bc , t

i,j
bc ) −

uj(x
i,j
bc , t

i,j
bc )|2), Jic =

∑NSD

j=1 ( 1

Nj
ic

∑Nj
ic

i=1 |ûj(x
i,j
ic , t

i,j
ic )− uj(xi,jic , t

i,j
ic )|2). {xi,j , ti,j} represent the

random scattered data points from the jth sub-domain upon which the constraints to satisfy governing
PDE / BC / IC / interface condition are imposed.
The interface loss Jif consists of problem specific interface conditions determined by the governing
physical law. We give the information about the relationship between the latent variable u and its
derivatives w.r.t the independent variables of two adjacent sub-domains to the model with the help
of interface loss. Let h(x, t, u, ux, ut, uxx, .., γ) be the problem specific flux to be conserved across
the interface. As an example, for a heat conduction problem, h, u, γ represent the local heat flux
density, temperature and thermal conductivity respectively. The conservation of heat flux density
h = −γ∇u · n̂, where n̂ is the unit vector normal to the interface, which is governed by Fourier’s
law of heat conduction will be included in the interface loss. In general the interface loss is given

by, Jif =
∑NI

k=1( 1
Nk

if

∑Nk
if

i=1 |ûk+(xi,kif , t
i,k
if )− ûk−(xi,kif , t

i,k
if )|2) +

∑NI

k=1( 1
Nk

if

∑Nk
if

i=1 |ĥk+ − ĥk− |2)

where NI is the total no. of interfaces. {xi,kif , t
i,k
if }

Nk
if

i=1 indicate the training data points sampled from
the kth interface to inform the interface conditions connecting the solutions of the adjacent k+th and
k−th sub-domains to the model. ĥk+ , ĥk− are the flux values approximated by the neural networks
corresponding to the k+th and k−th sub-domains respectively at the interface. [λpde, λbc, λic, λif ] are
penalty factors which penalizes the violation of the constraints in the corresponding loss. Algorithm
of TPINN is shown in Algorithm. 1. Fig. 2 illustrates the schematic of a TPINN.

For solving inverse problems In inverse problem we have unknown parameters γj of PDE in Eqn.

(1) along with the additional information on points {xi,jinv, t
i,j
inv, }

Nj
inv

i=1 : Lj(uj , x
j
inv, t

j
inv) = 0 for

each jth sub-domain. TPINN solves the inverse problem just like forward problems by embedding
the unknown parameters γj to Θj and are learned by minimizing the loss JTPINN = λpdeJpde +

λbcJbc + λicJic + λifJif + λinvJinv , where Jinv =
∑NSD

j=1 ( 1

Nj
inv

∑Nj
inv

i=1 |Lj(ûj , x
i,j
inv, t

i,j
inv)|2).

4 Demonstration examples

We solve one forward and two inverse problems of heterogeneous heat conduction. PINN performs
poorly here because of the thermal conductivity discontinuity at the interface of two different
materials.
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Figure 2: Schematic of a TPINN consisting two hidden layers with 4 neurons in each hidden layer.
The first hidden layer is changed across the adjacent jth and j+th sub-domains ∀ j.

Algorithm 1 TPINN algorithm

Step 1: Identify the non-overlapping sub-domains.
Step 2: Decide the architecture of TPINN by fixing the no. of layers (NL) and no. of neurons in
each layer (Nq) for each sub-domain.
Step 3: Decide the set p which contains the layer(s) of the TPINN to be changed across each
sub-domain.
Step 4: Construct TPINN for jth sub-domain using Θshared and Θj , j = 1,2,...,NSD.
Step 5: Prepare random scattered training data points from all sub-domains.
Step 6: Prepare random scattered training data points from all the interfaces.
Step 7: Choose proper values for penalty factors.
Step 8: Initialize the parameters of the neural networks constructed in Step 4 using suitable
initialization method. Train these neural networks for the best parameters using the training data
prepared in Step 5 & Step 6 by minimizing the loss JTPINN using a suitable optimization method.
Θ∗ = arg minΘ(JTPINN )

4.1 1D steady-state heat conduction in a two-layered composite slab with heat generation

Consider the system ∂
∂x (K ∂T

∂x )+Q = 0 withK1 = 1, Q1 = 0 for x ∈ [0, 0.5] andK2 = 0.01, Q2 =
−10 for x ∈ [0.5, 1]. Boundary conditions are T (x = 0) = 0 & T (x = 1) = 1. We solve this strong
heterogeneous forward problem of finding the temperature distribution along the slabs using TPINN
with the first hidden layer change taking each slab as a sub-domain. The depth and width of the
neural networks used for both sub-domains are 1 and 100, respectively. We used 38 random interior
data points and 2 data points each at the boundary and interface nodes per sub-domain for training. A
penalty factor of 1 is used for all losses. Optimization is carried out initially using Adam optimizer
with a learning rate 0.001 for 5000 iterations followed by Sequential Least-Squares Programming
(SLSQP). Fig. 3a illustrates the temperature prediction by PINN and TPINN.

4.2 The inverse problem of determining temperature dependant thermal conductivity of
two-layered composite slab in a 1D steady-state heterogeneous heat conduction

Consider the non-linear system ∂
∂x (K(T )∂T

∂x ) = 0 with T1(x) = ln(1.3884x+ 1) & K1(T ) = eT

for x ∈ [0, 0.5] and T2(x) = 2ln(0.6942x + 0.9545) & K2(T ) = e0.5T for x ∈ [0.5, 1]. 40 noisy
temperature values and a heat flux value from random interior x locations per sub-domain are used
to estimate the thermal conductivity. No boundary and interface points are used. Each slab is taken
as a sub-domain. Here we cannot set K(T ) as a parameter of the neural network, as it is a function
of T . So we construct two TPINNs here; T-TPINN (input: x & output: T ) for temperature and
K-TPINN (input: T & output: K) for thermal conductivity. We have adopted the first layer change
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for T-TPINN and last layer change for K-TPINN. The depth and width of the neural networks used
for both sub-domains are 3 and 16, respectively. Optimization is accomplished initially using Adam
optimizer with a learning rate of 0.001 for 150000 iterations, followed by the SLSQP optimizer.
Penalty factors are λpde = 1, λinv for T prediction loss is 5 and for flux prediction loss is 1. Fig.
3b illustrates the thermal conductivity predictions by PINN and TPINN. As we can see, TPINN’s
prediction is agreeing with the exact solution reasonably well.
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(a) Temperature comparison for problem 4.1.
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(b) Thermal conductivity prediction for problem 4.2.

Figure 3

4.3 The inverse problem of determining spatially varying thermal conductivity of
three-layered composite slab in a 1D steady-state heterogeneous heat conduction

Consider the system ∂
∂x (K(x)∂T

∂x ) = 0 with K1(x) = e(x−1), T1(x) = 1 − 0.3655(e − e1−x) for

x ∈ [0, 0.25], K2(x) = 4x3, T2(x) = 1 − 0.3655(2.601 − 1

8x2
) for x ∈ (0.25, 0.5], K3(x) =

e0.5(x−1), T3(x) = 1−0.3655(4.669−2e0.5(1−x)) for x ∈ (0.5, 1]. 40 noisy temperature values and
a heat flux value from random interior x locations per sub-domain are used to estimate the thermal
conductivity. No boundary and interface points are used. Each slab is taken as a sub-domain. Here we
cannot set K(x) as a parameter of the neural network, as it is a function of x. So we construct TPINN
with the first hidden layer change with input: x & output: (T,K). The depth and width of the neural
network used for all sub-domains are 4 and 16, respectively. Optimization is accomplished initially
using Adam optimizer with a learning rate of 0.001 for 20000 iterations, followed by the SLSQP
optimizer. Penalty factors are λpde = 1, λinv for T prediction loss is 1.5 and for flux prediction loss
is 1. We solve this problem with DPINN [7] also. DPINN uses independent and different PINN
with its own set of parameters for each sub-domain. The depth and width of the neural network
used in DPINN for all sub-domains are 4 and 9, respectively; thus, both TPINN and DPINN have
nearly the same number of total parameters. Fig. 4a illustrates the temperature predictions by TPINN
& DPINN and Fig. 4b illustrates the thermal conductivity predictions by TPINN & DPINN. Even
though DPINN is able to predict with a good accuracy in second and third sub-domains, DPINN is
unable to achieve accuracy in the first sub-domain. TPINN is able to predict with excellent accuracy
in all three sub-domains.

5 Concluding remarks

In this paper, we introduce Transfer Physics Informed Neural Network (TPINN) for solving forward
and inverse problems respecting the PDE, initial condition, and boundary conditions specified.
TPINN is constructed by changing the hidden layers of PINN partially for each sub-domains. TPINN
outperforms PINN when there is a discontinuity in the parameter of PDE across non-overlapping
sub-domains. The numerical examples shown confirm the efficacy of TPINN in solving the forward
and inverse problems effectively, especially in heterogeneous domains. Also, the inverse problems
in a heterogeneous domain are hard to solve even with the conventional approaches, which involve
the execution of forward and inverse problems iteratively until convergence. TPINN replaces this
conundrum and solves the inverse problem efficiently by fitting a surrogate model.
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